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This is continued from [0].

4. Here we treat the case of general level L. Any L can be written
uniquely as L=T[ L, (L, € L), where p runs over all primes and L, is a
power of p. Then we have the canonical isomorphism H (L)=[], . H/(L,),
where p|L means L,+#1. We regard H (L, as a subgroup of H (L) by this
isomorphism. A set {N,, ---, N} of normal ¢g-subgroups of level L of
H (L) is called a Z-complete set of H, (L) if any normal g-subgroup N of
level L of H (L) can be expressed as N=N,Z (1<i<Fk) by a g¢-subgroup Z
of Z,(L), where Z (L) denotes the center of H,(L). Let&={N,, ---, N,} be
a set of normal subgroups of H (L) and K be a normal subgroup of H (L).
Then €K denotes the set {N.K, - .-, N K}

In order to define some normal ¢-subgroups of level L of H (L), we
shall use the notation [F, n; z] defined as follows. Let G, and G, be any
two groups, and set G=G, X G,. Let (F, n) be a pair of a normal subgroup
F of G, and an element n of G,. Let 2z be an element of the center of G.,.
Then we set [F, n; 2z1=F X {2 UnF X 2{z").

For any integer ke N, put Li=T[,.L, Suppose now that g=+2.
When L =1, the subset Z} of Z,(L§) is defined by Z} ={z € Z,(¢") ],z
{x1,}|ord (2)=even} (if L,=q"") or {ze [], {1} |2+1} (if L,+q¢"*). Let
us define the set S,(L) of subgroups of H,(L) by S, (L)={1} (if L,=1),
{1, Q, [Q, B; 2] (€ Z})} (if L,=2), {1, E,, Q;} (if L,=2%, {1, E}} (if L,=2?),
L E,, G G, [F;,, X;21(2eZ}),[F;, —X;2] (2eZ)} X=¢""(B,,_.Cp_s"
D, _)) (if L,=2™, m=>4), where the groups of type [F, n; z] are defined with
respect to the decomposition H (L)=H ,(2™) x H (L¥).

Theorem 4. Assume that q+2. Let L be any element of L. Let
S,(L) be the set defined above. Then a Z-complete set of H (L) is given by
the union of S/(L), S (L)M, S(L)R®, S(L)RPM, S(L)S®, S(L)S®M,
where the sets multiplied by RP or S® appear only when q=5 and L,=5"
(ke N), and the sets multiplied by M appear only when q+3 and L,=3.

Suppose now that g=2. When L§=£1, set Zf={z¢ [[, u{£L}|2-I}.
Let us define the set &,(L) of subgroups of H,(L) by S,(L)={1} (if L,=2"-'"
(m=2), 1, 2), {1, By, S, [+£E;, BC; 2l, [+Ef, BC-; 2]} (if L,=2), {1, Lz,
Ly, My, M5, P, Q,, S§, S5, [Hy, B.C,; 2], [Hf, —B,C,; 2, [H;, B,C;*; 2],
[Hf, —B/,Ci*; 2], [+ L§, BC; 2], [+ Lf, BC™'D; 2], [E}*, BC; 2], [E}",
—BC;2l} Gf L,=2%, {1, L}, L,, M},, M, N;,, N;,, O}, O;,, [H:, L; 2], [H;,



