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1. Let L(s, %) be the Dirichlet L-function with X primitive (mod k),
k>1. Let N(T, %) be the number of zeros of L(s, X) on the segment s=1/2
+it, 0<t<T. The purpose of the present note is to give a brief proof of

Theorem. Let T>=kP*, U=(kET)"®** with small e0. Then we
have

N(T+U,0)—N|(T,x)>».UlogT.

This should be compared with Karatsuba [2], and we stress that a
minor modification of our argument can yield a slight improvement upon
his result. There are two important ingredients in our argument: One is
Atkinson’s method [1], and the other is Weil’s result [6] on character sums.
More specifically, we have combined Selberg’s ideas [5] with ours [3]-[4].

2. Here we outline our proof of the theorem. The details will be
published elsewhere.

Let L(s, X)=+(s, Y)L(1—s, X) be the functional equation for L(s, x), and
put X(&, 2)=+"""(1/2+1t, X)L(1/24it, X) which is real for real t. Also, as
in [5], let a(v) be the coefficient in the Dirichlet series expansion for {(s)-'?,
and let f(v)=a()(og &/v)/log & with & to be determined later. We put

p(t, )= ;5 X)BRy= M-,

And we consider the estimation of
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where H 1, (kT)0/»* <UL T ¢,
Invoking the result of [4] we have, as a first step,
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Then we apply a modified version of Atkinson’s splitting argument to this
product of values of L-functions. For this sake let a, b be two positive
integers such that (a,b)=1 and (ab, k)=1. And we write, for Re (2)>1,
Re (w)> 1’



