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1. Introduction. Let a=(x) be an infinite sequence in the unit
interval E=[0, 1]. The sequence a is called uniformly distributed in E if
lim_A(a;x)=x for all x e E, where A(a;x)/N denotes the number of
terms Xn, O.n<_N--1, which are less than x. The diaphony F(a) and the
L discrepancy T(a) o the seluence a are defined for every positive integer
N as follows"

F(a)=(2 =1 (1/h2) I(1/N)S(a; h)[2)
and

where

T(a)-- A(a x)/N-- x 12 dx

S(a h)= -=0 exp (2zihx)
is the exponential sum of a. It is well known (see [9] and [10]), that both
T(a)O and F(a)--.O are equivalent to the sequence a being uniformly
distributed in E. Also it is known (see [5] and [6]), that the best possible
order o magnitude o both T(a) and F(a) is N-l(log N)1/2.

Now let (rj)? be a given infinite secluence o integers rj>=2. Suppose
also that for every integer ]>=0 we are given a permutation r of the set
{0, 1, ..., r+--l}. For the sake o brevity, we put R0=0 and R=rr...r
or ]>=1. The van der Corput generalized sequence a=((n)), associated
with the given sequences (r) and (r)g, was constructed by Faure [2] as
2ollows" For an integer n0, let

n==o ajR (a e {0, 1, ...,r+l--1}, ]=0, 1, ...)
be the (r)-adic expansion of n. Then set

(n)==0 r(a) R .
In the present paper, we prove that i the sequence (r) satisfies the

O(n), then both the diaphony F(a) of the van der Corputcondition

__
r=

generalized sequence a and the L discrepancy T() o any symmetric
sequence produced by have the best possible order o magnitude
N-(l.og N)/. Also we obtain an exact estimate or the L discrepancy o
a class of two-dimensional finite sequences associated with the van der
Corput generalized sequences.

2. Statement of the results.
Theorem 1. Suppose that (r) satisfies the condition

Bn for all n N,(1) =r__


