46. Symmetrization of the van der Corput Generalized Sequences

By Petko D. Proinov
Department of Mathematics, University of Plovdiv, Bulgaria (Communicated by Shokichi Iyanaga, m. J. A., May 12, 1988)

1. Introduction. Let $\sigma=\left(x_{n}\right)_{0}^{\infty}$ be an infinite sequence in the unit interval $E=[0,1]$. The sequence σ is called uniformly distributed in E if $\lim _{N \rightarrow \infty} A_{N}(\sigma ; x)=x$ for all $x \in E$, where $A_{N}(\sigma ; x) / N$ denotes the number of terms $x_{n}, 0 \leqq n \leqq N-1$, which are less than x. The diaphony $F_{N}(\sigma)$ and the L^{2} discrepancy $T_{N}(\sigma)$ of the sezuence σ are defined for every positive integer N as follows:

$$
F_{N}(\sigma)=\left(2 \sum_{h=1}^{\infty}\left(1 / h^{2}\right)\left|(1 / N) S_{N}(\sigma ; h)\right|^{2}\right)^{1 / 2}
$$

and

$$
T_{N}(\sigma)=\left(\int_{0}^{1}\left|A_{N}(\sigma ; x) / N-x\right|^{2} d x\right)^{1 / 2}
$$

where

$$
S_{N}(\sigma ; h)=\sum_{n=0}^{N-1} \exp \left(2 \pi i h x_{n}\right)
$$

is the exponential sum of σ. It is well known (see [9] and [10]), that both $T_{N}(\sigma) \rightarrow 0$ and $F_{N}(\sigma) \rightarrow 0$ are equivalent to the sequence σ being uniformly distributed in E. Also it is known (see [5] and [6]), that the best possible order of magnitude of both $T_{N}(\sigma)$ and $F_{N}(\sigma)$ is $N^{-1}(\log N)^{1 / 2}$.

Now let $\left(r_{j}\right)_{1}^{\infty}$ be a given infinite sequence of integers $r_{j} \geqq 2$. Suppose also that for every integer $j \geqq 0$ we are given a permutation τ_{j} of the set $\left\{0,1, \cdots, r_{j+1}-1\right\}$. For the sake of brevity, we put $R_{0}=0$ and $R_{j}=r_{1} r_{2} \cdots r_{j}$ for $j \geqq 1$. The van der Corput generalized sequence $\sigma=(\varphi(n))_{0}^{\infty}$, associated with the given sequences $\left(r_{j}\right)_{1}^{\infty}$ and $\left(\tau_{j}\right)_{0}^{\infty}$, was constructed by Faure [2] as follows: For an integer $n \geqq 0$, let

$$
n=\sum_{j=0}^{\infty} a_{j} R_{j} \quad\left(a_{j} \in\left\{0,1, \cdots, r_{j+1}-1\right\}, j=0,1, \cdots\right)
$$

be the $\left(r_{j}\right)$-adic expansion of n. Then set

$$
\varphi(n)=\sum_{j=0}^{\infty} \tau_{j}\left(a_{j}\right) / R_{j+1} .
$$

In the present paper, we prove that if the sequence $\left(r_{j}\right)_{1}^{\infty}$ satisfies the condition $\sum_{j=1}^{n} r_{j}^{2}=O(n)$, then both the diaphony $F_{N}(\sigma)$ of the van der Corput generalized sequence σ and the L^{2} discrepancy $T_{N}(\tilde{\sigma})$ of any symmetric sequence $\check{\sigma}$ produced by σ have the best possible order of magnitude $N^{-1}(\log N)^{1 / 2}$. Also we obtain an exact estimate for the L^{2} discrepancy of a class of two-dimensional finite sequences associated with the van der Corput generalized sequences.
2. Statement of the results.

Theorem 1. Suppose that $\left(r_{j}\right)_{1}^{\infty}$ satisfies the condition

$$
\begin{equation*}
\sum_{j=1}^{n} r_{j}^{2} \leqq B n \quad \text { for all } n \in N, \tag{1}
\end{equation*}
$$

