44. On a Weak Generalization of the Fundamental Theorem of the Theory of Curves or Hypersurfaces¹

By Kazushige UEN0 Tokyo University of Fisheries

(Communicated by Kôsaku Yosida, m. j. a., May 12, 1988)

0. Introduction. Let us consider the Euclidean space \mathbb{R}^3 and a surface with an analytic representation ${}^t(f_1, f_2, f_3) = f(x_1, x_2)$. Then, for this, we have first fundamental quantities $K_{ij}(j_x^1(f)) = p_i \cdot p_j \ (1 \le i, j \le 2)$ and second fundamental quantities $L_{ij}(j_x^2(f)) = |p_{ij}, p_1, p_2|/\sqrt{K_{11}K_{22}-(K_{12})^2} \ (1 \le i, j \le 2)$ where the dot means the canonical inner product in \mathbb{R}^3 and $p_i = {}^t(\partial f_1/\partial x_i, \partial f_2/\partial x_i, \partial f_3/\partial x_i), p_{ij} = {}^t(\partial^2 f_1/\partial x_i \partial x_j, \partial^2 f_2/\partial x_i \partial x_j, \partial^2 f_3/\partial x_i \partial x_j)$. K_{ij} (resp. L_{ij}) is considered as a function on the 1-jet space $J^1(\mathbb{R}^2, \mathbb{R}^3)$ (resp. the 2-jet space $J^2(\mathbb{R}^2, \mathbb{R}^3)$). For the above particular f, if we set $\lambda_{ij}(x) = K_{ij}(j_x^1(f))$ and $\eta_{ij}(x) = L_{ij}(j_x^2(f))$, then we get a system of differential equations $P: K_{ij} - \lambda_{ij} = 0$ $(1 \le i, j \le 2), L_{ij} - \eta_{ij} = 0 \ (1 \le i, j \le 2)$.

Let Γ be the pseudogroup generated by local isometries on the Euclidean space \mathbb{R}^3 . Then the fundamental theorem of the theory of surfaces means that any solution s of P is written by $s = \sigma \circ f$ for some $\sigma \in \Gamma$.

A similar fact holds for curves in \mathbb{R}^3 with an analytic representation ${}^t(f_1, f_2, f_3) = f(t)$ using the torsion and the curvature of f.

The purpose of this note is to generalize the above stated facts to any local immersion $f: \mathbb{R}^n \to \mathbb{R}^m$ (n < m) and any pseudogroup Γ of finite type on \mathbb{R}^m in a generic situation for f and Γ . The smoothness is always assumed to be of class C^{*} .

1. Statement of the results. Let $J^k(n, m)$ be the space of k-jets of local maps of \mathbb{R}^n to \mathbb{R}^m . If n < m, then $\tilde{J}^k(n, m)$ means the space of k-jets of local immersions and if $n \ge m$, $\tilde{J}^k(n, m)$ means the space of k-jets of local submersions. In both cases, $\tilde{J}^k(n, m)$ is open and dense in $J^k(n, m)$.

Let Γ be a pseudogroup on \mathbb{R}^m . Then Γ is lifted to a pseudogroup $\Gamma_n^{(k)}$ on $\tilde{J}^k(n, m)$ by $\phi^{(k)}(j_x^k(f)) = j_x^k(\phi \circ f)$.

A vector field X on \mathbb{R}^m is called a Γ -vector field if the local 1-parameter group of local transformations on \mathbb{R}^m generated by X is contained in Γ . Let \mathcal{L} denote the sheaf on \mathbb{R}^m of germs of Γ -vector fields. Then \mathcal{L} is also lifted to a sheaf $\mathcal{L}_n^{(k)}$ on $\tilde{J}^k(n, m)$. $(\mathcal{L}_n^{(k)})_p$ (resp. \mathcal{L}_z) means the stalk of $\mathcal{L}_n^{(k)}$ (resp. \mathcal{L}) on $p \in \tilde{J}^k(n, m)$ (resp. $z \in \mathbb{R}^m$).

Definition 1.1. A function ϕ on a neighbourhood of a point $p \in \tilde{J}^k(n, m)$ is called a differential invariant of Γ at p if $X\phi = 0$ for any $X \in (\mathcal{L}_n^{(k)})_p$.

Let $\{\phi_1, \dots, \phi_r\}$ be a maximal family of differential invariants of Γ at $j_x^k(f)$ such that the differentials $d\phi_1, \dots, d\phi_r$ are linearly independent at $j_x^k(f)$

Dedicated to Professor Kenichi SHIRAIWA on his 60th birthday.