43. On Representations of Lie Superalgebras. II

By Hirotoshi Furutsu
Department of Mathematics, College of Science and Technology, Nihon University

(Communicated by Kôsaku Yosida, m. J. A., May 12, 1988)

In this note we introduce a new method of constructing irreducible unitary representations ($=\mathrm{IURs}$) of a classical Lie superalgebra of type A. Then we classify all the irreducible unitary representations of real forms of Lie superalgebra $A(1,0)$. In the previous papers [2], [3], we define unitary representations of Lie superalgebras and introduce a general method of constructing irreducible representations of any simple Lie superalgebras. Moreover we classify and construct all the irreducible (unitary) representations of classical Lie superalgebra $\mathfrak{o z p}(1,2)$. Further we gave similar results for real forms of the Lie superalgebra $\mathfrak{l l}(2,1)(=A(1,0))$ exhaustively for the case where the even parts of representations are irreducible. There remains to study the case of non irreducible even parts.

1. New method. We have a Z-gradation $g_{c}=\mathfrak{g}_{c}^{-1} \oplus \mathrm{~g}_{c}^{0} \oplus \mathrm{~g}_{c}^{+1}$ with $\mathrm{g}_{c}^{0}=\mathrm{g}_{c, 0}$ the even part, of Lie superalgebras $g_{C}=A(n, 0)$ compatible with the $Z_{2}-$ gradation $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ of a real form \mathfrak{g} of g_{c}. A new method consists of the following. (i) First we study the weight distributions for IURs (π, V), and see in particular that any IUR is a highest (or lowest) weight representation because of its unitarity (see Proposition 1). (ii) Next we consider induced g_{c}-module $\bar{V}(\Lambda)=\operatorname{Ind}_{p}^{s} c L(\Lambda)$. Here $\mathfrak{p}=\mathrm{g}_{c}^{0} \oplus \mathrm{~g}_{c}^{+1}$, and $L(\Lambda)$ is an irreducible highest weight representation of $g_{c, 0}$ with highest weight Λ considered as \mathfrak{p}-module by putting \mathfrak{g}_{c}^{+1}-action as trivial. Any irreducible representation $V(\Lambda)$ of g_{c} with highest weight Λ is a quotient of $\bar{V}(\Lambda)$. (iii) Therefore we should determine the maximal submodule $I(\Lambda)$ of $\bar{V}(\Lambda)$ to get $V(\Lambda) \cong \bar{V}(\Lambda) /$ $I(1)$.
2. Preliminaries. Denote by $M(p, q ; K)$ the set of all matrices of type $p \times q$ with entries in a field K, and by g_{c} the complex algebra $\mathfrak{\xi l}(n, 1)$ $=A(n-1,0)$. Here $\mathfrak{Z l}(n, 1)$ is realized in $M(n+1, n+1 ; C)$ as in [4, p. 29]. Let \mathfrak{g}_{c} be a Cartan subalgebra of \mathfrak{g}_{c} consisting of diagonal matrices, then C $=\sum_{1 \leqq i \leqq n} E_{i, i}+n E_{n+1, n+1}$ is in \mathfrak{G}_{c}, where $E_{i, j}$ is an element of $M(n+1, n+1 ; C)$ with components 1 at (i, j) and 0 elsewhere. Real forms g of $g_{c}=\mathfrak{z l}(n, 1)$ are isomorphic, up to transition to their duals, to one of the following: (a) $\mathfrak{\mathfrak { H }}(n, 1 ; \boldsymbol{R})$; (b) $\mathfrak{H u}(n, 1 ; p, 1)([n+1 / 2] \leqq i \leqq n)$. Here $\mathfrak{\mathfrak { l } (n , 1 ; \boldsymbol { R }) = \mathfrak { H l } (n , 1)}$ $\cap M(n+1, n+1 ; \boldsymbol{R})$, and $\mathfrak{B u}(n, 1 ; p, 1)=\mathfrak{g u}(n, 1 ; p, 1)_{0} \oplus \mathfrak{H u}(n, 1 ; p, 1)_{1} \quad$ with $\mathfrak{B u}(n, 1 ; p, 1)_{s}=\left\{X \in \mathfrak{B l}(n, 1)_{s} ; J_{p} X+(-1)^{s} \cdot{ }^{t} \bar{X} \bar{J}_{p}=0\right\}$ for $s=0,1$, where ${ }^{t} X$ is the transposed matrix of X and $J_{p}=\operatorname{diag}(1, \cdots, 1,-1, \cdots,-1, \sqrt{-1})$ with p-times 1 and $(n-p)$-times -1 .
