38. On the Complex \mathcal{C}_{1} Attached to a Certain Class of Lagrangian Set

By Motoo Uchida
Department of Mathematics, Faculty of Sciences, University of Tokyo
(Communicated by Heisuke Hironaka, m. J. A., April 12, 1988)

0. Introduction. On a real manifold X, we prove that there exist microlocally simple sheaves along some kind of Laglangian set $\Lambda \subset T^{*} X$, and that such sheaves are unique up to shifts. This has been shown by M. Kashiwara and P. Schapira when Λ is smooth, and used in the course of the study of quantized contact transformations ([2], [3]). In this note we treat some cases where Λ is not smooth as well. As an application we can give a microlocal definition of the complex $\mathcal{C}_{\Omega \mid X}$, which is introduced by P. Schapira [5] for the microlocal study of boundary value problems.
1. Let X be a C^{2} manifold, and $\pi: T^{*} X \rightarrow X$ be the cotangent bundle to X. For $F \in O b\left(D^{+}(X)\right)$, the microsupport $S S(F) \subset T^{*} X$ is defined by Kashiwara-Schapira [1], [3]. For a point $p \in T^{*} X$, we denote by $D^{+}(X ; p)$ the localization of the category $D^{+}(X)$ by the null system

$$
\mathcal{E}(p)=\left\{F \in O b\left(D^{+}(X)\right) ; S S(F) \nRightarrow p\right\}
$$

(cf. [2], [3]).
Let Y be a closed submanifold of X, and Ω be an open subset of Y. We take a point $p \in T_{Y}^{*} X$, and assume, at $x=\pi(p) \in Y$,

$$
\begin{equation*}
N_{x}^{*}(\Omega) \neq T_{x}^{*} Y \tag{1.1}
\end{equation*}
$$

$N^{*}(\Omega)$ denotes the conormal cone of Ω in Y. We denote by ρ and $\tilde{\omega}$ the natural associated maps from $Y \times{ }_{X} T^{*} X$ to $T^{*} Y$ and $T^{*} X$, respectively.

Proposition 1.1. Let $p \in T_{Y}^{*} X$ and let $F \in O b\left(D^{+}(X)\right)$. Assume (1.1) and $S S(F) \subset \tilde{\omega} \rho^{-1}\left(N^{*}(\Omega)^{a} \times \bar{\Omega}\right)$ in a neighbourhood of p. Then there exists a complex M^{\cdot} of \boldsymbol{Z}-modules such that F is isomorphic to $M_{\Omega}^{*}=M^{*} \otimes_{Z} Z_{\Omega}$ in $D^{+}(X ; p)$.

Proof. Since $S S(F) \subset \pi^{-1}(Y)$, it follows from Proposition 6.2.1 of [3] that there exists $G \in O b\left(D^{+}(Y)\right)$ such that F is isomorphic to $R j_{*} G$ in $D^{+}(X ; p)$ (j denotes the embedding of Y into X). By Proposition 4.1.1 of [3] our assumption implies that $S S(G) \subset T^{*} Y$ is contained in $N^{*}(\Omega)^{a}{ }_{Y} \times \bar{\Omega}$ in a neighbourhood of $x=\pi(p) \in T_{Y}^{*} Y$. Thus we have, taking account of (1.1),
i) $\operatorname{supp}(G) \subset \bar{\Omega}$,
ii) $S S(G) \cap N^{*}(\Omega) \subset T_{Y}^{*} Y$.

By Corollary 4.3.3 of [3], at any point $x^{\prime} \notin \Omega$,

$$
G_{x^{\prime}}=\boldsymbol{R} \Gamma_{\bar{\Omega}}(G)_{x^{\prime}}=0
$$

This implies the natural morphism $G_{\Omega} \rightarrow G$ is an isomorphism in $D^{+}(Y ; x)$.

