37. Algebraic Equations for Green Kernel on a Tree

Ву Казиніко Аомото

Department of Mathematics, Nagoya University

(Communicated by Kunihiko Kodaira, M. J. A., April 12, 1988)

Let Γ be a connected, locally finite tree with the set of vertices $V(\Gamma)$. Let A be a symmetric operator on $l^2(\Gamma)$, the space of square summable complex valued functions on $V(\Gamma)$:

(1)
$$Au(\tilde{r}) = \sum_{\langle r', r \rangle} a_{r, r'} u(\tilde{r}') + a_{r, r'} u(\tilde{r}),$$

for $u \in l^2(\Gamma)$, with $a_{r,r}$ and $a_{r,r'} \in \mathbb{R}$ such that $a_{r,r'} \neq 0$, where $\langle \Upsilon, \Upsilon' \rangle$ means that Υ and Υ' are adjacent to each other. We assume that A is self-adjoint with the domain $\mathcal{D}(A): \{u \in l^2(\Gamma) \mid \sum_{r \in V(\Gamma)} |u(\Upsilon)|^2 < \infty\}$. Then there exists uniquely the Green function $G(\Upsilon, \Upsilon' \mid Z)$ for $A, \Upsilon, \Upsilon' \in V(\Gamma)$, representing the resolvent $(z-A)^{-1}$ for $z \in C$, Im $z \neq 0$:

(2)
$$G(\gamma, \gamma' | z) = \int_{-\infty}^{+\infty} \frac{d\Theta(\gamma, \gamma' | \lambda)}{z - \lambda}$$

for the spectral kernel $\Theta(\tilde{r}, \tilde{r}' | \lambda)$ of A. We remark that for any $\tilde{r} \in V(\Gamma)$, $G(\tilde{r}, \tilde{r} | z)$ satisfies

(3) $\operatorname{Im} G(\tilde{\tau}, \tilde{\tau} | z) \cdot \operatorname{Im} z < 0.$

The purpose of this note is to extend a result obtained in [3] and [4] to an arbitrary tree. Algebraicity of Green functions was proved under various contexts. Here we want to give explicit formulae for them for an arbitrary self adjoint operator (see [3], [8] and [9]). First we want to prove

Lemma 1. For arbitrary adjacent vertices γ, γ' , suppose γ' and $\gamma_0 \in V(\Gamma)$ do not lie in the same connected component of $\Gamma - \{\gamma\}$. Then the quotient $G(\gamma_0, \gamma' | z)/G(\gamma_0, \gamma | z)$ does not depend on γ_0 .

Proof. We denote by $\Gamma_{r'}$ the connected subtree of Γ consisting of vertices γ'' lying in the connected component containing γ' of $\Gamma - \{\gamma\}$. We consider the following boundary value problem on the connected subtree $\Gamma_{r'} \cup \{\gamma\}$ containing $\Gamma_{r'}$ and γ : To find a solution $u \in l^2(\Gamma_{r'} \cup \{\gamma\})$ such that

(4)
$$Au(\gamma'') = zu(\gamma'') \quad \text{for } \gamma'' \in V(\Gamma_{\gamma'})$$

$$(5) u(\tilde{r}) = 1.$$

Then every $G(\gamma_0, \gamma''|z)/G(\gamma_0, \gamma|z)$ is a solution for this problem. Hence Lemma 1 follows from the following:

Lemma 2. There exists the unique solution $u(\tilde{r}')$ for the problem (4) and (5).

Proof. Suppose that there exist two solutions $u_1(\tilde{r}'')$ and $u_2(\tilde{r}'')$ on $V(\Gamma_{r'} \cup \{\tilde{r}\})$. Then the difference $v = u_1 - u_2$ also satisfies (4) and vanishes at \tilde{r} . We have to prove that v vanishes identically. We define a function \tilde{v} on $V(\Gamma)$ such that

(6)
$$\tilde{v}(\tilde{\gamma}'') = v(\tilde{\gamma}'') \quad \text{for } \tilde{\gamma}'' \in V(\Gamma_{\tau'}),$$