37. Algebraic Equations for Green Kernel on a Tree

By Kazuhiko Аомото
Department of Mathematics, Nagoya Universtiy
(Communicated by Kunihiko Kodaira, m. J. A., April 12, 1988)

Let Γ be a connected, locally finite tree with the set of vertices $V(\Gamma)$. Let A be a symmetric operator on $l^{2}(\Gamma)$, the space of square summable complex valued functions on $V(\Gamma)$:
(1)

$$
A u(\gamma)=\sum_{\left\langle r^{\prime}, r\right\rangle} a_{r, r^{\prime}} u\left(\gamma^{\prime}\right)+a_{r, r} u(\gamma)
$$

for $u \in l^{2}(\Gamma)$, with $a_{r, r}$ and $a_{r, r^{\prime}} \in \boldsymbol{R}$ such that $a_{r, r^{\prime}} \neq 0$, where $\left\langle\gamma, \gamma^{\prime}\right\rangle$ means that γ and γ^{\prime} are adjacent to each other. We assume that A is self-adjoint with the domain $\mathscr{D}(A):\left\{\left.u \in l^{2}(\Gamma)\left|\sum_{r \in V(\Gamma)}\right| u(\gamma)\right|^{2}<\infty\right\}$. Then there exists uniquely the Green function $G\left(\gamma, \gamma^{\prime} \mid z\right)$ for $A, \gamma, \gamma^{\prime} \in V(\Gamma)$, representing the resolvent $(z-A)^{-1}$ for $z \in C, \operatorname{Im} z \neq 0$:

$$
\begin{equation*}
G\left(\gamma, \gamma^{\prime} \mid z\right)=\int_{-\infty}^{+\infty} \frac{d \Theta\left(\gamma, \gamma^{\prime} \mid \lambda\right)}{z-\lambda} \tag{2}
\end{equation*}
$$

for the spectral kernel $\Theta\left(\gamma, \gamma^{\prime} \mid \lambda\right)$ of A. We remark that for any $\gamma \in V(\Gamma)$, $G(\gamma, \gamma \mid z)$ satisfies

$$
\begin{equation*}
\operatorname{Im} G(\gamma, \gamma \mid z) \cdot \operatorname{Im} z<0 \tag{3}
\end{equation*}
$$

The purpose of this note is to extend a result obtained in [3] and [4] to an arbitrary tree. Algebraicity of Green functions was proved under various contexts. Here we want to give explicit formulae for them for an arbitrary self adjoint operator (see [3], [8] and [9]). First we want to prove

Lemma 1. For arbitrary adjacent vertices γ, γ^{\prime}, suppose γ^{\prime} and $r_{0} \in V(\Gamma)$ do not lie in the same connected component of $\Gamma-\{\gamma\}$. Then the quotient $G\left(\gamma_{0}, \gamma^{\prime} \mid z\right) / G\left(\gamma_{0}, \gamma \mid z\right)$ does not depend on γ_{0}.

Proof. We denote by $\Gamma_{r^{\prime}}$ the connected subtree of Γ consisting of vertices $\gamma^{\prime \prime}$ lying in the connected component containing γ^{\prime} of $\Gamma-\{\gamma\}$. We consider the following boundary value problem on the connected subtree $\Gamma_{r^{\prime}} \cup\{\gamma\}$ containing $\Gamma_{r^{\prime}}$ and γ : To find a solution $u \in l^{2}\left(\Gamma_{r^{\prime}} \cup\{\gamma\}\right)$ such that
(4) $A u\left(\gamma^{\prime \prime}\right)=z u\left(\gamma^{\prime \prime}\right) \quad$ for $\gamma^{\prime \prime} \in V\left(\Gamma_{\gamma^{\prime}}\right)$,
(5)

$$
u(\gamma)=1
$$

Then every $G\left(\gamma_{0}, \gamma^{\prime \prime} \mid z\right) / G\left(\gamma_{0}, \gamma \mid z\right)$ is a solution for this problem. Hence Lemma 1 follows from the following :

Lemma 2. There exists the unique solution $u\left(\gamma^{\prime \prime}\right)$ for the problem (4) and (5).

Proof. Suppose that there exist two solutions $u_{1}\left(\gamma^{\prime \prime}\right)$ and $u_{2}\left(\gamma^{\prime \prime}\right)$ on $V\left(\Gamma_{r^{\prime}} \cup\{\gamma\}\right)$. Then the difference $v=u_{1}-u_{2}$ also satisfies (4) and vanishes at r. We have to prove that v vanishes identically. We define a function \tilde{v} on $V\left(I^{\top}\right)$ such that

$$
\begin{equation*}
\tilde{v}\left(\gamma^{\prime \prime}\right)=v\left(\gamma^{\prime \prime}\right) \quad \text { for } \gamma^{\prime \prime} \in V\left(\Gamma_{\gamma^{\prime}}\right), \tag{6}
\end{equation*}
$$

