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1. Introduction. V. Jones’ theory on index of IIl factors [5] is a
major break-through in recent development of the theory of operator
algebras. In the type II case, if index is finite, then a factor and its sub-
factor are known to possess many similar properties (AFD, Property T,
etc.). We would like to investigate a similar problem in the type III set-up.

Let l be a type III factor with a (type III) subfactor , and let E be
a conditional expectation from onto . The notion of index of E was
introduced by the second-named author, [6], based on Connes’ spatial
theory and Haagerup’s theory on operator valued weights, [4]. Throughout
the article we assume Index E c. To check how similar /and are,
we will compare the (smooth part of) flow of weights of /with that of. Our main theorem shows that each of the two flows is restricted by
the other via the Index E (o)-information. More precisely, there exists
a single flow (X, T), and each of the two flows of weights appears as a (at
most Index E to one) factor flow of (X, Tt).

In this announcement we will just sketch a proof of the main theorem.
Full details and further results will be published elsewhere.

2. Notations and the main theorem. Let E be a conditional expec-
tation from a actor /onto its subfactor . We assume that Index E
c and /and are o.f type III. (If one of and is of type III, then

the other is also of type III.) We will denote by (X, T) the flow o
weights of ([3]). The flow of weights can be computed from the as-
sociated crossed product l--i>R and the dual action (t} on
(See [3], [10] or details.) More precisely, the center Z() is isomorphic
to L(X, d/), and by restriction the dual action induces the ergodic auto-
morphism group on Z(/). Then, the non-singular ergodic flow
on X is related to t via

(t(f))(o)-- f(T_o) o e X:, t e R, f e Z(t)-L(X:, d/).
Theorem. There exists a flow (X, (Tt}eR) satisfying the following"
( ) X is isomorphic to X: (1, 2, .., m} (resp. X {1, 2, ., n}) as

a measure space for some positive integer m, mIndex E (resp. positive
integer n, n_<_Index E),

(ii) the projection map : (resp. ) from X onto X: (resp. X)
intertwines Tt and T (resp. Tt and T)"

T = T, T =oT, t e R.


