24. On Cayley-Hamilton's Theorem and Amitsur-Levitzki's Identity

By Yoshio AGAOKA

Department of Mathematics, Kyoto University

(Communicated by Shokichi IYANAGA, M. J. A., March 12, 1987)

1. The purpose of this note is to prove a generalization of the classical Cayley-Hamilton's theorem and a tensor version of Amitsur-Levitzki's identity concerning matrices.

Let V be an n-dimensional vector space over the field of complex numbers and A_1, \dots, A_p be linear endomorphisms of V. We define a linear map $A_1 \wedge \dots \wedge A_p \colon \bigwedge^p V \longrightarrow \bigwedge^p V$ ($\bigwedge^p V$ is the skew symmetric tensor product of V) by

 $(A_1 \wedge \cdots \wedge A_p)(u_1 \wedge \cdots \wedge u_p) = (1/p!) \sum_{\sigma \in \mathfrak{S}_p} (-1)^{\sigma} A_1 u_{\sigma(1)} \wedge \cdots \wedge A_p u_{\sigma(p)},$ where $(-1)^{\sigma}$ is the signature of the permutation $\sigma \in \mathfrak{S}_p$ and $u_1, \cdots, u_p \in V.$ Note that the equality $A_{\sigma(1)} \wedge \cdots \wedge A_{\sigma(p)} = A_1 \wedge \cdots \wedge A_p$ holds for any permutation $\sigma \in \mathfrak{S}_p$. For $X \in \text{End}(V)$, we define invariants $f_i(X) \in C$ by $\det (\lambda I - X) = \sum_{i=0}^n f_i(X) \lambda^{n-i},$

$$\operatorname{et} (\lambda I - X) = \sum_{i=0}^{n} f_i(X) \lambda^{n-i}$$

where I is the identity matrix. Then we have

Theorem 1. Let X be a linear endomorphism of V and p be an integer $(1 \leq p \leq n)$. Then, by putting r = n+1-p, the following identity holds: $\sum_{\substack{a_1+\dots+a_p=r\\a_i\geq 0}} X^{a_1}\wedge\cdots\wedge X^{a_p} + f_1(X) \sum_{\substack{a_1+\dots+a_p=r-1\\a_i\geq 0}} X^{a_1}\wedge\cdots\wedge X^{a_p} + \cdots \wedge X^{a_p} + \cdots \wedge I = 0:$ $+f_{r-1}(X) \sum_{\substack{a_1+\dots+a_p=1\\a_i\geq 0}} X^{a_1}\wedge\cdots\wedge X^{a_p} + f_r(X)\cdot I\wedge\cdots\wedge I = 0:$ $\wedge^p V \longrightarrow \wedge^p V,$

where the sum is taken over all the combinations of integers $\{a_i\}$ satisfying the conditions under Σ . (We consider $X^0 = I$.)

Remark. In the case p=1, the above identity is reduced to the form : $X^n + f_1(X)X^{n-1} + \cdots + f_n(X) \cdot I = 0 : V \longrightarrow V,$

which is nothing but the classical Cayley-Hamilton's theorem.

Proof. We have only to prove the theorem in case where X is a diagonal matrix because such a matrix constitutes a dense subset of the space of matrices. Let $\{\alpha_1, \dots, \alpha_n\}$ be the eigenvalues of X and $\{e_1, \dots, e_n\}$ be a basis of V such that $Xe_i = \alpha_i e_i$. We prove that the element $e_1 \wedge \dots \wedge e_p \in \bigwedge^p V$ is mapped to 0 by the left hand side of the identity (1). We put $V_1 = \{e_1, \dots, e_p\}$ and $V_2 = \{e_{p+1}, \dots, e_n\}$. First, we have

$$(2) \quad (X^{a_1} \wedge \dots \wedge X^{a_p})(e_1 \wedge \dots \wedge e_p) = (1/p!) \sum_{\mathfrak{S}_p} (-1)^{\sigma} X^{a_1} e_{\sigma(1)} \wedge \dots \wedge X^{a_p} e_{\sigma(p)} \\ = (1/p!) \sum_{\mathfrak{S}_p} (-1)^{\sigma} \alpha^{a_1}_{\sigma(1)} \cdots \alpha^{a_p}_{\sigma(p)} e_{\sigma(1)} \wedge \dots \wedge e_{\sigma(p)} \\ = (1/p!) \sum_{\mathfrak{S}_p} \alpha^{a_{\sigma(1)}}_1 \cdots \alpha^{a_{\sigma(p)}}_p e_1 \wedge \dots \wedge e_p.$$

We denote by S_{λ} and T_{λ} the Schur functions corresponding to the partition $\lambda = (\lambda_1, \dots, \lambda_s)$ $(\lambda_1 \ge \dots \ge \lambda_s \ge 0)$ with variables $\{\alpha_1, \dots, \alpha_p\}$ and $\{\alpha_{p+1}, \dots, \alpha_n\}$,