24. On Cayley-Hamilton's Theorem and Amitsur-Levitzki's Identity

By Yoshio Agaoka
Department of Mathematics, Kyoto University

(Communicated by Shokichi Iyanaga, m. J. A., March 12, 1987)

1. The purpose of this note is to prove a generalization of the classical Cayley-Hamilton's theorem and a tensor version of Amitsur-Levitzki's identity concerning matrices.

Let V be an n-dimensional vector space over the field of complex numbers and A_{1}, \cdots, A_{p} be linear endomorphisms of V. We define a linear $\operatorname{map} A_{1} \wedge \cdots \wedge A_{p}: \wedge^{p} V \longrightarrow \wedge^{p} V\left(\bigwedge^{p} V\right.$ is the skew symmetric tensor product of V) by
$\left(A_{1} \wedge \cdots \wedge A_{p}\right)\left(u_{1} \wedge \cdots \wedge u_{p}\right)=(1 / p!) \sum_{\sigma \in ⿷_{p}}(-1)^{\sigma} A_{1} u_{\sigma(1)} \wedge \cdots \wedge A_{p} u_{\sigma(p)}$, where $(-1)^{\sigma}$ is the signature of the permutation $\sigma \in \mathbb{S}_{p}$ and $u_{1}, \cdots, u_{p} \in V$. Note that the equality $A_{\sigma(1)} \wedge \cdots \wedge A_{\sigma(p)}=A_{1} \wedge \cdots \wedge A_{p}$ holds for any permutation $\sigma \in \mathbb{S}_{p}$. For $X \in \operatorname{End}(V)$, we define invariants $f_{i}(X) \in C$ by

$$
\operatorname{det}(\lambda I-X)=\sum_{i=0}^{n} f_{i}(X) \lambda^{n-i},
$$

where I is the identity matrix. Then we have
Theorem 1. Let X be a linear endomorphism of V and p be an integer $(1 \leqq p \leqq n)$. Then, by putting $r=n+1-p$, the following identity holds:

$$
\begin{equation*}
\sum_{a_{a_{i}+\cdots+a_{p}=r}} X^{a_{1}} \wedge \cdots \wedge X^{a_{p}}+f_{3}(X) \sum_{\substack{a_{1}+\cdots+a_{p}=r-1 \\ a_{i} \geq 0}} X^{a_{1}} \wedge \cdots \wedge X^{a_{p}}+\cdots \tag{1}
\end{equation*}
$$

$+f_{r-1}(X) \sum_{\substack{a_{1}+\cdots+a_{p}=1 \\ a_{i} \geq 0}} X^{a_{1}} \wedge \cdots \wedge X^{a_{p}}+f_{r}(X) \cdot I \wedge \cdots \wedge I=0:$

$$
\bigwedge^{p} V \longrightarrow \bigwedge^{p} V
$$

where the sum is taken over all the combinations of integers $\left\{a_{i}\right\}$ satisfying the conditions under Σ. (We consider $X^{0}=I$.)

Remark. In the case $p=1$, the above identity is reduced to the form :

$$
X^{n}+f_{1}(X) X^{n-1}+\cdots+f_{n}(X) \cdot I=0: V \longrightarrow V,
$$

which is nothing but the classical Cayley-Hamilton's theorem.
Proof. We have only to prove the theorem in case where X is a diagonal matrix because such a matrix constitutes a dense subset of the space of matrices. Let $\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ be the eigenvalues of X and $\left\{e_{1}, \cdots, e_{n}\right\}$ be a basis of V such that $X e_{i}=\alpha_{i} e_{i}$. We prove that the element $e_{1} \wedge \cdots \wedge e_{p}$ $\in \bigwedge^{p} V$ is mapped to 0 by the left hand side of the identity (1). We put $V_{1}=\left\{e_{1}, \cdots, e_{p}\right\}$ and $V_{2}=\left\{e_{p+1}, \cdots, e_{n}\right\}$. First, we have
(2) $\quad\left(X^{a_{1}} \wedge \cdots \wedge X^{a_{p}}\right)\left(e_{1} \wedge \cdots \wedge e_{p}\right)=(1 / p!) \sum_{\varsigma_{p}}(-1)^{\sigma} X^{a_{1}} e_{\sigma(1)} \wedge \cdots \wedge X^{a_{p}} e_{\sigma(p)}$

$$
\begin{aligned}
& =(1 / p!) \sum_{\mathscr{s}_{p}}(-1)^{\sigma} \alpha_{\sigma(1)}^{a_{1}} \cdots \alpha_{\sigma(p)}^{a_{p}} e_{\sigma(1)} \wedge \cdots \wedge e_{\sigma(p)} \\
& =(1 / p!) \sum_{\mathscr{s}_{p}} \alpha_{1}^{a_{\sigma(1)}} \cdots \alpha_{p}^{a_{\alpha(p)}} e_{1} \wedge \cdots \wedge e_{p} .
\end{aligned}
$$

We denote by S_{λ} and T_{λ} the Schur functions corresponding to the partition $\lambda=\left(\lambda_{1}, \cdots, \lambda_{s}\right)\left(\lambda_{1} \geq \cdots \geq \lambda_{s}>0\right)$ with variables $\left\{\alpha_{1}, \cdots, \alpha_{p}\right\}$ and $\left\{\alpha_{p+1}, \cdots, \alpha_{n}\right\}$,

