22. On the Rank of the Elliptic Curve $y^2 = x^3 + k$

By Shoichi KIHARA*)

Department of Mathematics, Hyogo University of Teacher Education

(Communicated by Shokichi IYANAGA, M. J. A., March 12, 1987)

Let F be a finitely generated field over a prime field and $k \in F$. The F-points of the elliptic curve

$$E(k): y^2 = x^3 + k$$

form a finitely generated abelian group with respect to the well-known addition on E(k). The rank of this group will be also called the rank of the curve E(k) and denoted by r(k). In this note, we consider the case F = Q(p, q) where p, q are variables and give an example of the elliptic curve E(k) with $r(k) \ge 5$.

Let us first consider the case with the field F in general, and suppose $a, b, c, d \in F$. In our previous note [3], we showed that E(k) with

(1)
$$k = (a^6 + b^6 + c^6 - 2a^3b^3 - 2b^3c^3 - 2c^3a^3)/4$$

has 5 *F*-points $P_i = (x_i, y_i)$ $(i=1, \dots, 5)$

	$x_1 = ab$	$y_1 = (a^3 + b^3 - c^3)/2$
(2)	$x_2 = ac$	$y_2 = (a^3 - b^3 + c^3)/2$
	$x_{s} = bc$	$y_3 = (-a^3 + b^3 + c^3)/2$
	$x_4 = bd$	$y_4 = (-d^3 - b^3 + c^3)/2$
	$x_5 = cd$	$y_5 = (-d^3 + b^3 - c^3)/2$

provided that

(3) $a^3 + d^3 = 2(b^3 + c^3).$

In [3], we utilized the parametric solution

(4)
$$a = 72t^{*}$$

 $b = 36t^{3} - 1$
 $c = 1$
 $d = -72t^{*} + 6t$

of (3) to show that there are infinitely many values of $t \in Z$, for which E(k) has at least 20 coprime Z-points.

Observe now that (3) has the following parametric solution

$$(5) \qquad \begin{array}{c} a = -2p - 2q + 8(p^2 - pq + q^2)^2 \\ b = -1 + 4(p - 2q)(p^2 - pq + q^2) \\ c = 1 - 4(p + q)(p^2 - pq + q^2) \\ d = 2p - 4q - 8(p^2 - pq + q^2)^2 \end{array}$$

(cf. Hardy and Wright [2] p. 199). This solution gives (4) as a specialization p=t, q=-t.

^{*)} Current address: 2186-1 Shimobun, Kinsei-cho, Kawanoe-shi, Ehime-ken, 799-01 Japan.