17. The Vanishing Viscosity Method and a Two-phase Stefan Problem with Nonlinear Flux Condition of Signorini Type

By Nobuyuki Kenmochi*) and Irena Pawlow**)
(Communicated by Kôsaku Yosida, m. J. A., March 12, 1987)

1. Introduction. This paper is concerned with a two-phase Stefan problem with nonlinear flux condition of the so-called Signorini type. Let Ω be a bounded domain in $R^{N}(N \geqq 2)$ whose boundary consists of two smooth disjoint surfaces Γ_{0}, Γ_{1}, and let T be a fixed positive number, $Q=(0, T) \times \Omega$, $\Sigma_{0}=(0, T) \times \Gamma_{0}$, and $\Sigma_{1}=(0, T) \times \Gamma_{1}$. The problem, denoted by (P), is to find a function $u=u(t, x)$ on Q satisfying

$$
\begin{aligned}
& u_{t}-\Delta \beta(u)=0 \quad \text { in } Q, \\
& u(0, \cdot)=u_{0} \quad \text { in } \Omega, \\
& \beta(u)=g_{0} \quad \text { on } \Sigma_{0}, \\
& -\frac{\partial \beta(u)}{\partial n} \in \gamma\left(\beta(u)-g_{1}\right) \quad \text { on } \Sigma_{1} .
\end{aligned}
$$

Here $\beta: R \rightarrow R$ is a given function which vanishes on $[0,1]$, is non-decreasing on R and bi-Lipschitz continuous both on $(-\infty, 0]$ and $[1,+\infty) ; \gamma$ is a multivalued function from R into R given by $\gamma(r)=0$ for $r>0, \gamma(0)=(-\infty, 0]$ and $\gamma(r)=\varnothing$ for $r<0 ; u_{0}$ is a given initial datum; g_{0} and g_{1} are given functions on Σ_{0} and Σ_{1}, respectively; ($\partial / \partial n$) denotes the outward normal derivative. For the data we postulate that
(A1) $\quad g_{i}(i=0,1)$ is the trace of a function, denoted by g_{i} again, on Q such that $g_{i} \in W^{1,2}\left(0, T ; H^{1}(\Omega)\right) \cap L^{\infty}\left(0, T ; H^{2}(\Omega)\right), m_{0} \leqq g_{0} \leqq m_{0}^{\prime}, m_{1} \geqq g_{1} \geqq m_{1}^{\prime}$ a.e. on Q, where $m_{0} \leqq m_{0}^{\prime}<0, m_{1} \geqq m_{1}^{\prime}>0$ are constants.
(A2) (i) $u_{0} \in L^{\infty}(\Omega)$, meas. $\left\{x \in \Omega ; 0 \leqq u_{0}(x) \leqq 1\right\}=0, v_{0}=\beta\left(u_{0}\right) \in H^{1}(\Omega)$; (ii) $v_{0}=g_{0}(0, \cdot)$ a.e. on $\Gamma_{0}, v_{0} \geqq g_{1}(0, \cdot)$ a.e. on Γ_{1}; (iii) there are constants $\delta>0$, $k_{0}<0, k_{1}>0$ such that $v_{0} \leqq k_{0}$ a.e. on $\Omega_{0, \delta}$ and $v_{0} \geqq k_{1}$ a.e. on $\Omega_{1, \delta}$, where

$$
\Omega_{i, \delta}=\left\{x \in \Omega ; \operatorname{dist} .\left(x, \Gamma_{i}\right)<\delta\right\}, \quad i=0,1 .
$$

In particular, when g_{0} and g_{1} are independent of time t, problem (P) was treated by Magenes-Verdi-Visintin [6] in the framework of nonlinear contraction semigroups in $L^{1}(\Omega)$ (cf. Bénilan [1], Crandall [3]), and the solution is unique in the sense of Crandall-Liggett [4]. Also, in case the flux condition is of the form $-(\partial / \partial n) \beta(u)=\gamma(t, x, \beta(u))$, with smooth function $\gamma(t, x, r)$ on $\Sigma_{1} \times R$, the problem was uniquely solved in variational sense by Niezgodka-Pawlow [7], Visintin [9] and Niezgodka-Pawlow-Visintin [8].

[^0]
[^0]: *) Department of Mathematics, Faculty of Education, Chiba University, Chiba, Japan.
 **) Polish Academy of Sciences, Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland.

