17. The Vanishing Viscosity Method and a Two-phase Stefan Problem with Nonlinear Flux Condition of Signorini Type

By Nobuyuki KENMOCHI*) and Irena PAWLOW**)

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1987)

1. Introduction. This paper is concerned with a two-phase Stefan problem with nonlinear flux condition of the so-called Signorini type. Let Ω be a bounded domain in \mathbb{R}^N ($N \ge 2$) whose boundary consists of two smooth disjoint surfaces Γ_0 , Γ_1 , and let T be a fixed positive number, $Q = (0, T) \times \Omega$, $\Sigma_0 = (0, T) \times \Gamma_0$, and $\Sigma_1 = (0, T) \times \Gamma_1$. The problem, denoted by (P), is to find a function u = u(t, x) on Q satisfying

$$u_{\iota} - \Delta \beta(u) = 0 \quad \text{in } Q,$$

$$u(0, \cdot) = u_{0} \quad \text{in } \Omega,$$

$$\beta(u) = g_{0} \quad \text{on } \Sigma_{0},$$

$$- \frac{\partial \beta(u)}{\partial n} \in \Upsilon(\beta(u) - g_{1}) \quad \text{on } \Sigma_{1}.$$

Here $\beta: R \to R$ is a given function which vanishes on [0, 1], is non-decreasing on R and bi-Lipschitz continuous both on $(-\infty, 0]$ and $[1, +\infty)$; γ is a multivalued function from R into R given by $\gamma(r)=0$ for r>0, $\gamma(0)=(-\infty, 0]$ and $\gamma(r)=\emptyset$ for r<0; u_0 is a given initial datum; g_0 and g_1 are given functions on Σ_0 and Σ_1 , respectively; $(\partial/\partial n)$ denotes the outward normal derivative. For the data we postulate that

(A1) $g_i (i=0,1)$ is the trace of a function, denoted by g_i again, on Q such that $g_i \in W^{1,2}(0,T; H^1(\Omega)) \cap L^{\infty}(0,T; H^2(\Omega)), m_0 \leq g_0 \leq m'_0, m_1 \geq g_1 \geq m'_1$ a.e. on Q, where $m_0 \leq m'_0 < 0, m_1 \geq m'_1 > 0$ are constants.

(A2) (i) $u_0 \in L^{\infty}(\Omega)$, meas. $\{x \in \Omega; 0 \leq u_0(x) \leq 1\} = 0, v_0 = \beta(u_0) \in H^1(\Omega)$; (ii) $v_0 = g_0(0, \cdot)$ a.e. on $\Gamma_0, v_0 \geq g_1(0, \cdot)$ a.e. on Γ_1 ; (iii) there are constants $\delta > 0$, $k_0 < 0, k_1 > 0$ such that $v_0 \leq k_0$ a.e. on $\Omega_{0,\delta}$ and $v_0 \geq k_1$ a.e. on $\Omega_{1,\delta}$, where $\Omega_{i,\delta} = \{x \in \Omega; \text{ dist. } (x, \Gamma_i) < \delta\}, \quad i = 0, 1.$

In particular, when g_0 and g_1 are independent of time t, problem (P) was treated by Magenes-Verdi-Visintin [6] in the framework of nonlinear contraction semigroups in $L^1(\Omega)$ (cf. Bénilan [1], Crandall [3]), and the solution is unique in the sense of Crandall-Liggett [4]. Also, in case the flux condition is of the form $-(\partial/\partial n)\beta(u)=\gamma(t, x, \beta(u))$, with smooth function $\gamma(t, x, r)$ on $\Sigma_1 \times R$, the problem was uniquely solved in variational sense by Niezgodka-Pawlow [7], Visintin [9] and Niezgodka-Pawlow-Visintin [8].

^{*)} Department of Mathematics, Faculty of Education, Chiba University, Chiba, Japan.

^{**&#}x27; Polish Academy of Sciences, Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland.