15. A Formulation of Noncommutative McMillan Theorem

By Masanori OHya,*) Makoto Tsukada,*) and Hisaharu Umegaki**)
(Communicated by Kôsaku Yosida, m. J. A., March 12, 1987)

§ 1. Introduction. In this short note, we formulate and prove a McMillan type convergence theorem in a noncommutative dynamical system based on our works about entropy operators [1].

Before formulating the McMillan theorem, we discuss a description of noncommutative dynamical systems, a noncommutative message space and entropy operators.

A noncommutative dynamical system (NDS for short) can be described by a von Neumann algebraic triple or, more generally, a C^{*}-algebraic triple denoted by ($\mathfrak{R}, \mathfrak{S}, \alpha$). Namely, \mathfrak{R} is a von Neumann algebra or C^{*}-algebra, \mathfrak{S} is the set of all states on \mathfrak{R} and α is an automorphism of \mathfrak{N} describing a certain evolution of the system. A self-adjoint element A of the algebra \mathfrak{n} corresponds to a random variable in usual commutative dynamical (probability) systems (CDS for short) and a state in NDS corresponds to a probability measure in CDS. Here we use a von Neumann algebraic description for simplicity. Consult the bibliography [2] for NDS and noncommutative probability theory.

Let \mathfrak{N} be a finite dimensional von Neumann (matrix) algebra acting on a Hilbert space \mathscr{H} with a faithful normal tracial state τ, and let $P(\mathfrak{M})$ be the set of all minimal finite partitions of unit I in a von Neumann subalgebra \mathfrak{M} of \mathfrak{n}. A set of projections $\tilde{P}=\left\{P_{j}\right\}$ is said to be a minimal partition of I in \mathfrak{M} if $P_{j} \in \mathfrak{M}(\forall j), P_{i} \perp P_{j}(i \neq j)$ and $\sum P_{j}=I$ hold, and for each j there does not exist a projection E such as $0<E<P_{j}$. Since any two partitions $\tilde{P}=\left\{P_{j}\right\}$ and $\tilde{Q}=\left\{Q_{j}\right\}$ are unitary equivalent, the entropy operator $H_{\tau}(\mathfrak{M})$ and the entropy $S_{\tau}(\mathfrak{M})$ w.r.t. \mathfrak{M} and τ can be uniquely defined as [1] :

$$
\begin{equation*}
H_{r}(\mathfrak{M})=-\sum_{k} P_{k} \log \tau\left(P_{k}\right) \tag{1.1}
\end{equation*}
$$

$$
S_{\tau}(\mathfrak{M})=\tau\left(\overline{H_{\tau}}(\mathfrak{M})\right)
$$

for any $\tilde{P}=\left\{P_{j}\right\} \in P(\mathfrak{M})$. The above entropy $S_{t}(\mathfrak{M})$ has already been discussed in $[3,4]$ without considering $H_{\tau}(\mathfrak{M})$.

Now for any von Neumann subalgebras \mathfrak{M}_{1} and \mathfrak{N}_{2} of \mathfrak{R} and any partition $\tilde{P}=\left\{P_{j}\right\} \in P\left(\mathfrak{M}_{2}\right)$, it is easily seen that \tilde{P} is not always in $P\left(\mathfrak{M}_{1} \vee \mathfrak{M}_{2}\right)$ but there exists a partition $\left\{P_{i j}\right\}$ in $P\left(\mathfrak{M}_{1} \vee \mathfrak{M}_{2}\right)$ such that $P_{j}=\sum_{i} P_{i j}$, where

[^0]
[^0]: *) Department of Information Sciences, Science University of Tokyo, Noda City, Chiba 278, Japan.
 **) Department of Applied Mathematics, Science University of Tokyo, Shinjuku-ku Kagurazaka, Tokyo 162, Japan.

