15. A Formulation of Noncommutative McMillan Theorem

By Masanori OHYA,*) Makoto TSUKADA,*) and Hisaharu UMEGAKI**)

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1987)

§1. Introduction. In this short note, we formulate and prove a McMillan type convergence theorem in a noncommutative dynamical system based on our works about entropy operators [1].

Before formulating the McMillan theorem, we discuss a description of noncommutative dynamical systems, a noncommutative message space and entropy operators.

A noncommutative dynamical system (NDS for short) can be described by a von Neumann algebraic triple or, more generally, a C^* -algebraic triple denoted by $(\mathfrak{N}, \mathfrak{S}, \alpha)$. Namely, \mathfrak{N} is a von Neumann algebra or C^* -algebra, \mathfrak{S} is the set of all states on \mathfrak{N} and α is an automorphism of \mathfrak{N} describing a certain evolution of the system. A self-adjoint element A of the algebra \mathfrak{N} corresponds to a random variable in usual commutative dynamical (probability) systems (CDS for short) and a state in NDS corresponds to a probability measure in CDS. Here we use a von Neumann algebraic description for simplicity. Consult the bibliography [2] for NDS and noncommutative probability theory.

Let \mathfrak{N} be a finite dimensional von Neumann (matrix) algebra acting on a Hilbert space \mathscr{H} with a faithful normal tracial state τ , and let $P(\mathfrak{M})$ be the set of all *minimal finite partitions of unit I* in a von Neumann subalgebra \mathfrak{M} of \mathfrak{N} . A set of projections $\tilde{P} = \{P_j\}$ is said to be a minimal partition of I in \mathfrak{M} if $P_j \in \mathfrak{M}(\forall j)$, $P_i \perp P_j$ $(i \neq j)$ and $\sum P_j = I$ hold, and for each j there does not exist a projection E such as $0 < E < P_j$. Since any two partitions $\tilde{P} = \{P_j\}$ and $\tilde{Q} = \{Q_j\}$ are unitary equivalent, the entropy operator $H_{\tau}(\mathfrak{M})$ and the entropy $S_{\tau}(\mathfrak{M})$ w.r.t. \mathfrak{M} and τ can be uniquely defined as [1]:

(1.1) $H_{\tau}(\mathfrak{M}) = -\sum_{k} P_{k} \log \tau(P_{k})$

(1.2)
$$S_{\tau}(\mathfrak{M}) = \tau(H_{\tau}(\mathfrak{M}))$$

for any $\tilde{P} = \{P_j\} \in P(\mathfrak{M})$. The above entropy $S_{\mathfrak{r}}(\mathfrak{M})$ has already been discussed in [3, 4] without considering $H_{\mathfrak{r}}(\mathfrak{M})$.

Now for any von Neumann subalgebras \mathfrak{M}_1 and \mathfrak{M}_2 of \mathfrak{N} and any partition $\tilde{P} = \{P_j\} \in P(\mathfrak{M}_2)$, it is easily seen that \tilde{P} is not always in $P(\mathfrak{M}_1 \vee \mathfrak{M}_2)$ but there exists a partition $\{P_{ij}\}$ in $P(\mathfrak{M}_1 \vee \mathfrak{M}_2)$ such that $P_j = \sum_i P_{ij}$, where

^{*)} Department of Information Sciences, Science University of Tokyo, Noda City, Chiba 278, Japan.

^{**)} Department of Applied Mathematics, Science University of Tokyo, Shinjuku-ku Kagurazaka, Tokyo 162, Japan.