14. On the Propagation of Analyticity for Some Class of Differential Equations with Non-involutive Double Characteristics

By Kenji Hasegawa
Department of Mathematics, University of Tokyo
(Communicated by Kôsaku Yosida, m. J. A., March 12, 1987)

1. Introduction. Let Ω be an open set in R^{n+1} containing the origin, with the coordinates $\left(x_{0}, \cdots, x_{n}\right)$. We shall consider the differential equation :
(1)

$$
P\left(x, D_{x}\right) u(x)=f(x), \quad f(x) \in \mathcal{A}(\Omega), \quad u(x) \in \mathscr{D}^{\prime}(\Omega)
$$

where $D_{x}=-i \partial / \partial x$, and $P\left(x, D_{x}\right)$ is a second order linear differential operator with analytic coefficients in Ω.

Let $p_{2}(x, \xi)$ be the principal symbol of $P\left(x, D_{x}\right)$. For k, l satisfying $k+l<n$ we put $\left(x^{\prime}, \xi^{\prime}\right)=\left(x_{1}, \cdots, x_{k} ; \xi_{1}, \cdots, \xi_{k}\right),\left(x^{\prime \prime}, \xi^{\prime \prime}\right)=\left(x_{k+1}, \cdots, x_{k+l} ; \xi_{k+1}\right.$, $\left.\cdots, \xi_{k+l}\right)$. We assume the following hypotheses:
(i) p_{2} has the form

$$
\begin{equation*}
p_{2}(x, \xi)=\xi_{0}^{2}-a(x, \xi)+b(x, \xi), \tag{2}
\end{equation*}
$$

where a, b are real valued and non-negative functions independent of ξ_{0} and homogeneous of degree 2 with respect to ξ.
(ii) $a(x, \xi)$ (resp. $b(x, \xi)$) vanishes exactly of order 2 on $\xi^{\prime}=0$ (resp. $\left.x^{\prime \prime}=\xi^{\prime \prime}=0\right)$ in a conic neighborhood of $(0 ; 0, \cdots, 0,1)$ in $T^{*} \Omega$.

From (i), (ii) we can see that $p_{2}(x, \xi)$ has doubly characteristic points on $\Lambda=\left\{(x, \xi) \mid x^{\prime \prime}=\xi_{0}=\xi^{\prime}=\xi^{\prime \prime}=0\right\}$ which is a non-involutive submanifold of $T^{*} \Omega$. We shall investigate the propagation of analyticity of a solution $u(x)$ of (1) along the leaf $\Gamma=\left\{(x, \xi) \mid x_{i}=0, k+1 \leqq i \leqq n, \xi_{i}=0,0 \leqq i \leqq n-1\right.$, $\left.\xi_{n}=1\right\}$ of Λ. We regard $\left(x_{0}, \cdots, x_{k}\right)$ as the coordinates of Γ and $\left(x_{0}, \cdots, x_{k}\right.$; $\left.\tilde{\xi}_{0}, \cdots, \tilde{\xi}_{k}\right)$ as those of $T^{*} \Gamma$. In order to state our theorem we introduce the function $q\left(x_{0}, x^{\prime} ; \tilde{\xi}_{0}, \tilde{\xi}^{\prime}\right)$ on $T^{*} \Gamma$ as follows:

$$
\begin{equation*}
q\left(x_{0}, x^{\prime} ; \tilde{\xi}_{0}, \tilde{\xi}^{\prime}\right)=\tilde{\xi}_{0}^{2}-\sum_{1 \leq i, j \leq k} \tilde{\xi}_{i} \tilde{\xi}_{j} \partial_{\xi_{i}} \partial_{\xi_{j}} a\left(x_{0}, x^{\prime}, 0 ; 0, \cdots, 0,1\right) / 2 . \tag{3}
\end{equation*}
$$

Let Σ_{t} be the subset of Γ defined as the intersection of the hypersurface $S_{t}=\left\{\left(x_{0}, x^{\prime}\right) \mid x_{0}=t\right\}$ and the projection to Γ of the integral curves of

$$
\begin{equation*}
H_{q}=2 \tilde{\xi}_{0} \frac{\partial}{\partial x_{0}}-\frac{\partial q}{\partial \tilde{\xi}^{\prime}} \frac{\partial}{\partial x^{\prime}}+\frac{\partial q}{\partial x^{\prime}} \frac{\partial}{\partial \tilde{\xi}^{\prime}}, \tag{4}
\end{equation*}
$$

in $T^{*} \Gamma$ through a point $\left(0 ; \tilde{\xi}_{0}, \tilde{\xi}^{\prime}\right)$ such that $q\left(0 ; \tilde{\xi}_{0}, \tilde{\xi}^{\prime}\right)=0$. Further let Ω_{t} be the connected component of $S_{t} \backslash \Sigma_{t}$ which is relatively compact. Then we have,

Theorem. Let t_{0}, t_{1} be positive real numbers such that $t_{0} \geqq t_{1}$ and $\bigcup_{0 \leq t \leq t_{0}} \Omega_{t} \subset \Omega$, and assume that a solution $u(x)$ of (1) satisfies

$$
\begin{equation*}
W F_{a}(u) \cap \Sigma_{t_{0}}=\varnothing \tag{5}
\end{equation*}
$$

