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1. Introduction. Let tO be an open set in R+ containing the origin,
with the coordinates (x0, ., x). We shall consider the differential equa-
tion"
( 1 ) P(x, Dx)u(x)--f(x), f(x) e (2), u(x) e
where D----i3/3x, and P(x,D) is a second order linear differential
operator with analytic coefficients in tO.

Let p.(x,) be the principal symbol of P(x,D). For k,l satisfying
/c - n we put (x’, ’) (x, ., x 1, ), (x", ") (x +, x+ +,.

...,+). We assume the following hypotheses"
( ) p. has the form

( 2 ) p.(x, )---a(x, )/b(x, ),
where a, b are real valued and non-negative functions independent of o
and homogeneous of degree 2 with respect to .

(ii) a(x,) (resp. b(x,)) vanishes exactly of order 2 on ’=0 (resp.
x"--"--0) in a conic neighborhood of (0;0, ..., 0, 1) in T*D.

From (i), (ii)we can see that p(x, ) has doubly characteristic points
on A={(x,)]x"=o=’="=O} which is a non-involutive submanifold of
T*/2. We shall investigate the propagation of analyticity of a solution
u(x) of (1) along the leaf F={(x,)[x,=O, k+lgi<_n, ,=0, O<=i<=n--1,

== 1} of A. We regard (x0,..., x) as the coordinates of F and (x0,..., x;
0,’" ",$,) as those of T*F. In order to state our theorem we introduce
the function q(Xo, x’; $0, $’) on T*F as follows"
( 3 ) q(Xo, x’; o, ’)=-- , ja,ja(Xo, x’, 0; 0, ..., 0, 1)/2.

Let X, be the subset of F defined as the intersection of the hypersurface
S,= {(Xo, x’)lXo=t} and the projection to F of the integral curves of

(4) Hq=25o. 3q 3 +3q 3

in T*F through a point (0; $0,$’) such that q(0; $0,$’)=0. Further let 9
be the connected component of S,\2’, which is relatively compact. Then.
we have,

Theorem. Let to, t1 be positive real numbers such that totl and
UO_t_to 9tC, and assume that a solution u(x) of (1) satisfies
5 ) WFa(u) to--- ,


