14. On the Propagation of Analyticity for Some Class of Differential Equations with Non-involutive Double Characteristics

By Kenji HASEGAWA

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1987)

1. Introduction. Let Ω be an open set in \mathbb{R}^{n+1} containing the origin, with the coordinates (x_0, \dots, x_n) . We shall consider the differential equation:

(1)
$$P(x, D_x)u(x) = f(x), \quad f(x) \in \mathcal{A}(\Omega), \quad u(x) \in \mathcal{D}'(\Omega),$$

where $D_x = -i\partial/\partial x$, and $P(x, D_x)$ is a second order linear differential operator with analytic coefficients in Ω .

Let $p_2(x,\xi)$ be the principal symbol of $P(x,D_x)$. For k,l satisfying k+l < n we put $(x',\xi') = (x_1, \dots, x_k; \xi_1, \dots, \xi_k)$, $(x'',\xi'') = (x_{k+1}, \dots, x_{k+l}; \xi_{k+1}, \dots, \xi_{k+l})$. We assume the following hypotheses:

(i) p_2 has the form

(2)
$$p_2(x,\xi) = \xi_0^2 - a(x,\xi) + b(x,\xi),$$

where a, b are real valued and non-negative functions independent of ξ_0 and homogeneous of degree 2 with respect to ξ .

(ii) $a(x,\xi)$ (resp. $b(x,\xi)$) vanishes exactly of order 2 on $\xi'=0$ (resp. $x''=\xi''=0$) in a conic neighborhood of $(0;0,\dots,0,1)$ in $T*\Omega$.

From (i), (ii) we can see that $p_{\imath}(x,\xi)$ has doubly characteristic points on $\Lambda = \{(x,\xi) \mid x'' = \xi_0 = \xi' = \xi'' = 0\}$ which is a non-involutive submanifold of $T^*\Omega$. We shall investigate the propagation of analyticity of a solution u(x) of (1) along the leaf $\Gamma = \{(x,\xi) \mid x_i = 0, \ k+1 \le i \le n, \ \xi_i = 0, \ 0 \le i \le n-1, \ \xi_n = 1\}$ of Λ . We regard (x_0, \dots, x_k) as the coordinates of Γ and $(x_0, \dots, x_k; \xi_0, \dots, \xi_k)$ as those of $T^*\Gamma$. In order to state our theorem we introduce the function $q(x_0, x'; \xi_0, \xi')$ on $T^*\Gamma$ as follows:

(3)
$$q(x_0, x'; \tilde{\xi}_0, \tilde{\xi}') = \tilde{\xi}_0^2 - \sum_{1 \leq i, j \leq k} \tilde{\xi}_i \tilde{\xi}_j \partial_{\xi_i} \partial_{\xi_j} a(x_0, x', 0; 0, \dots, 0, 1)/2.$$

Let Σ_t be the subset of Γ defined as the intersection of the hypersurface $S_t = \{(x_0, x') | x_0 = t\}$ and the projection to Γ of the integral curves of

$$H_{q}=2\tilde{\xi}_{0}\frac{\partial}{\partial x_{0}}-\frac{\partial q}{\partial \tilde{\xi}'}\frac{\partial}{\partial x'}+\frac{\partial q}{\partial x'}\frac{\partial}{\partial \tilde{\xi}'},$$

in $T^*\Gamma$ through a point $(0; \tilde{\xi}_0, \tilde{\xi}')$ such that $q(0; \tilde{\xi}_0, \tilde{\xi}') = 0$. Further let Ω_t be the connected component of $S_t \setminus \Sigma_t$ which is relatively compact. Then we have,

Theorem. Let t_0, t_1 be positive real numbers such that $t_0 \ge t_1$ and $\bigcup_{0 \le t \le t_0} \Omega_t \subset \Omega$, and assume that a solution u(x) of (1) satisfies (5) $WF_a(u) \cap \Sigma_{t_0} = \emptyset$,