112. Gram's Law for the Zeta Zeros and the Eigenvalues of Gaussian Unitary Ensembles

By Akio FujiI
Department of Mathematics, Rikkyo University
(Communicated by Shokichi Iyanaga, m. J. A., Dec. 14, 1987)

§ 1. Let γ run over the positive imaginary parts of the zeros of the Riemann zeta function $\zeta(s)$. Let $\Gamma(s)$ be the Γ-function and $\vartheta(t)=$ $\operatorname{Im}(\log \Gamma(1 / 4+(1 / 2) i t))-(1 / 2) t \log \pi$, where t is a real number. We define g_{x} by $\vartheta\left(g_{x}\right)=x \pi$ for $x \geqq-1$, where $\vartheta(t)$ is strictly increasing for $t \geqq 7$. Here we are concerned with the following problem.

Problem. To study the quantity defined by

$$
\lim _{M \rightarrow \infty} \frac{1}{M} G_{M}(k, \alpha)
$$

for each integer $k \geqq 0$ and any positive number α, where we put

$$
G_{M}(k, \alpha)=\left|\left\{-1 \leqq m \leqq M ;\left|\left\{\gamma \leqq \vartheta^{-1}(\pi(M+1)) ; \frac{1}{\pi} \vartheta(\gamma) \in[m, m+\alpha)\right\}\right|=k\right\}\right|
$$

γ being counted with multiplicity.
We recall two observations concerning this problem. First Gram observed more than eighty years ago that the zeros of $\zeta(1 / 2+i t)$ appears exactly once in the interval (g_{m}, g_{m+1}) up to $t \leqq 50$. This phenomenon, which seemed to Gram to continue also for $t>50$, has been called Gram's law although many counter-examples have been observed since Hutchinson (cf. chapters 6,7 and 8 of [2] for a detailed description of the history). Gram's law implies that for any integer $M \geqq-1, G_{M}(k, 1)=M+2$ if $k=1$ and $=0$ if $k \neq 1$. Second, the latest computer calculations by van de Lune, te Riele and Winter [14] tell us that for $M=1500000000,(1 / M) G_{M}(0,1)=0.1378 \cdots$, $(1 / M) G_{M}(1,1)=0.7261 \cdots, \quad(1 / M) G_{M}(2,1)=0.1342 \cdots \quad$ and $(1 / M) G_{M}(3.1)=$ $0.0018 \cdots$ and that $(1 / M) G_{m}(k, 1)$ increases for $k=0,2$ and 3 and decreases for $k=1$ as M becomes larger. We remark here that in both observations, all the non-trivial zeros of $\zeta(s)$ are on the critical line and are simple as far as they have calculated. In this note we shall state some results and conjectures concerning the above problem.
§ 2. We denote the number of the non-trivial zeros of $\zeta(s)$ in $0<\operatorname{Im}(s)$ $<t$ by $N(t)$ as usual. Since

$$
G_{M}(k, \alpha)=\left|\left\{-1 \leqq m \leqq M ; N\left(g_{m+\alpha}\right)-N\left(g_{m}\right)=k\right\}\right|
$$

and $N(t)=\pi^{-1} \vartheta(t)+1+S(t)$ for $t \geqq t_{0}$, the following means

$$
\sum_{m \leqq M}\left(S\left(g_{m+\alpha}\right)-S\left(g_{m}\right)\right)^{j} \quad \text { for any integer } j \geqq 1
$$

must give some information on our problem, where we put $S(t)=$ $(1 / \pi) \arg \zeta(1 / 2+i t)$ as usual. The above sum is a discrete version of the integral

