104. The 0-minimal Ideal of the Global of a Combinatorial Completely 0-simple Semigroup

By Takayuki TAMURA and Kenya YAMAOKA Department of Mathematics, University of California, Davis (Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1987)

1. Introduction. Let $S = \mathcal{M}^{0}(I, M, \{1\}; P)$ be a completely 0-simple combinatorial semigroup where $\{1\}$ is the trivial group and $P = (p_{ji})$ is an $M \times I$ -matrix over $\{0, 1\}$ (see [1], [2]). Let $\mathcal{P}(S)$ be the global i.e. the power semigroup of S. As proved in [3], $\mathcal{P}(S)$ has a unique 0-minimal ideal $\mathcal{C}(S)$, and $\mathcal{C}(S) \cong \mathcal{M}^{0}(\mathcal{P}(I), \mathcal{P}(M), \{1\}; \tilde{P})$ where $\tilde{P} = (\tilde{p}_{BA}), B \in \mathcal{P}(M), A \in \mathcal{P}(I),$ $\bar{p}_{BA} = 1$ if $p_{ji} \neq 0$ for some $j \in B$, $i \in A$; $\tilde{p}_{BA} = 0$ otherwise. According to [4], $\mathcal{P}(S)$ has a unique maximal regular zero-free \mathcal{J} -class $\mathcal{I}(S)$ and $\mathcal{I}^{0}(S) = \mathcal{I}(S)$ $\cup \{0\}$ is completely 0-simple and $\mathcal{I}^{0}(S) \cong \mathcal{M}^{0}(\bar{Q}(I), \bar{Q}(M), \{1\}; \bar{P})$ where $\bar{Q}(I)$ is the set of all elements A of $\mathcal{P}(I)$ satisfying ; there is $j \in M$ such that $p_{ji} \neq 0$ for all $i \in A$; $\bar{Q}(M)$ is dually defined, $\bar{P} = (\bar{p}_{BA})$ where $\bar{p}_{BA} = 1$ if $p_{ji} \neq 0$ for all $j \in B, i \in A; \bar{p}_{BA} = 0$ otherwise. Let S_1 and S_2 be completely 0-simple semigroups, $S_1 = \mathcal{M}^{0}(I_1, M_1, \{1\}; P_1), S_2 = \mathcal{M}^{0}(I_2, M_2, \{1\}; P_2)$. The first author has obtained the following :

Lemma 1. [4] If $\mathcal{I}^0(S_1) \cong \mathcal{I}^0(S_2)$, then $S_1 \cong S_2$.

In this paper we will use this result to prove that $C(S_1) \cong C(S_2)$ implies $S_1 \cong S_2$.

2. Definitions. Let $X = (x_{ji})$ be an $M \times I$ -matrix (i.e. $j \in M, i \in I$) over $\{0, 1\}$. Given X, define $X' = (x'_{ji})$ by $x'_{ji} = 1$ if $x_{ji} = 0$; $x'_{ji} = 0$ if $x_{ji} = 1$. Let $X = (x_{ji})$ and $Y = (y_{ji})$ be $M_1 \times I_1$ - and $M_2 \times I_2$ -matrices over $\{0, 1\}$ respectively. We say X is equivalent to Y, denoted by $X \sim Y$, if there are bijections σ : $M_1 \rightarrow M_2$ and τ : $I_1 \rightarrow I_2$ such that $x_{ji} = y_{\sigma(j),\tau(i)}$ for all $j \in M$, $i \in I$. If every row and every column of X contains 1, then X is called a sandwich. Both X and X' are sandwiches if and only if every row and every column of X contains 1, then M = M and I, namely, let $M^1 = M \cup \{1\}, 1 \in M; I^1 = I \cup \{1\}, 1 \in I$. Given an $M \times I$ -matrix $X = (x_{ji})$ over $\{0, 1\}$, we define an $M^1 \times I^1$ -matrix $X^1 = (x_{ji}^1)$ over $\{0, 1\}$ as follows: For all $j \in M$, $i \in I$,

 $x_{ji}^1 = x_{ji}, \quad x_{j1}^1 = x_{1i}^1 = 0, \quad x_{11}^1 = 1.$

Then $(X^{i})'$ is always a sandwich whether X is so or not. Let $X = (x_{ji}), j \in M$, $i \in I$, and for each $B \in \mathcal{P}(M)$, $A \in \mathcal{P}(I)$, define a set $X_{BA} = \{x_{ji} : j \in B, i \in A\}$. Given an $M \times I$ -matrix $X = (x_{ji})$ over $\{0, 1\}$, we define a $\mathcal{P}(M) \times \mathcal{P}(I)$ -matrices \tilde{X} and \overline{X} as follows:

$$\begin{split} \tilde{X} &= (\tilde{x}_{BA}), \quad \tilde{x}_{BA} = \begin{cases} 1 & \text{if } 1 \in X_{BA} \\ 0 & \text{if } X_{BA} = \{0\}, \end{cases} \\ \bar{X} &= (\bar{x}_{BA}), \quad \bar{x}_{BA} = \begin{cases} 1 & \text{if } X_{BA} = \{1\} \\ 0 & \text{if } 0 \in X_{BA}. \end{cases} \end{split}$$