104. The O-minimal Ideal of the Global of a Combinatorial Completely 0 -simple Semigroup

By Takayuki Tamura and Kenya Yamaoka
Department of Mathematics, University of California, Davis
(Communicated by Shokichi Iyanaga, m. J. A., Nov. 12, 1987)

1. Introduction. Let $S=\mathscr{M}^{0}(I, M,\{1\} ; P)$ be a completely 0 -simple combinatorial semigroup where $\{1\}$ is the trivial group and $P=\left(p_{j i}\right)$ is an $M \times I$-matrix over $\{0,1\}$ (see [1], [2]). Let $\mathscr{P}(S)$ be the globali.e. the power semigroup of S. As proved in [3], $\mathcal{P}(S)$ has a unique 0 -minimal ideal $\mathcal{C}(S)$, and $\mathcal{C}(S) \cong \mathscr{M}^{0}(\mathscr{P}(I), \mathscr{P}(M),\{1\} ; \tilde{P})$ where $\tilde{P}=\left(\tilde{p}_{B A}\right), \quad B \in \mathscr{P}(M), \quad A \in \mathcal{P}(I)$, $\bar{p}_{B A}=1$ if $p_{j i} \neq 0$ for some $j \in B, i \in A ; \tilde{p}_{B A}=0$ otherwise. According to [4], $\mathscr{P}(S)$ has a unique maximal regular zero-free \mathcal{G}-class $\mathscr{I}(S)$ and $\mathscr{I}^{0}(S)=\mathscr{I}(S)$ $\cup\{0\}$ is completely 0 -simple and $\mathscr{T}^{0}(S) \cong \mathscr{M}^{0}(\bar{Q}(I), \bar{Q}(M),\{1\} ; \bar{P})$ where $\bar{Q}(I)$ is the set of all elements A of $\mathcal{P}(I)$ satisfying ; there is $j \in M$ such that $p_{j i} \neq 0$ for all $i \in A ; \bar{Q}(M)$ is dually defined, $\bar{P}=\left(\bar{p}_{B A}\right)$ where $\bar{p}_{B A}=1$ if $p_{j i} \neq 0$ for all $j \in B, i \in A ; \bar{p}_{B A}=0$ otherwise. Let S_{1} and S_{2} be completely 0 -simple semigroups, $S_{1}=\mathscr{M}^{0}\left(I_{1}, M_{1},\{1\} ; P_{1}\right), S_{2}=\mathscr{M}^{0}\left(I_{2}, M_{2},\{1\} ; P_{2}\right)$. The first author has obtained the following:

Lemma 1. [4] If $\mathscr{I}^{0}\left(S_{1}\right) \cong \mathscr{I}^{0}\left(S_{2}\right)$, then $S_{1} \cong S_{2}$.
In this paper we will use this result to prove that $\mathcal{C}\left(S_{1}\right) \cong \mathcal{C}\left(S_{2}\right)$ implies $S_{1} \cong S_{2}$.
2. Definitions. Let $X=\left(x_{j i}\right)$ be an $M \times I$-matrix (i.e. $\left.j \in M, i \in I\right)$ over $\{0,1\}$. Given X, define $X^{\prime}=\left(x_{i i}^{\prime}\right)$ by $x_{j i}^{\prime}=1$ if $x_{j i}=0 ; x_{j i}^{\prime}=0$ if $x_{j i}=1$. Let $X=\left(x_{j i}\right)$ and $Y=\left(y_{j i}\right)$ be $M_{1} \times I_{1}$ - and $M_{2} \times I_{2}$-matrices over $\{0,1\}$ respectively. We say X is equivalent to Y, denoted by $X \sim Y$, if there are bijections σ : $M_{1} \rightarrow M_{2}$ and $\tau: I_{1} \rightarrow I_{2}$ such that $x_{j i}=y_{\sigma(j), \tau(i)}$ for all $j \in M, i \in I$. If every row and every column of X contains 1 , then X is called a sandwich. Both X and X^{\prime} are sandwiches if and only if every row and every column of X contains both 0 and 1. Adjoin a new letter 1 to M and I, namely, let $M^{1}=M$ $\cup\{1\}, 1 \notin M ; I^{1}=I \cup\{1\}, 1 \in I$. Given an $M \times I$-matrix $X=\left(x_{12}\right)$ over $\{0,1\}$, we define an $M^{1} \times I^{1}$-matrix $X^{1}=\left(x_{j i}^{1}\right)$ over $\{0,1\}$ as follows: For all $j \in M$, $i \in I$,

$$
x_{j i}^{1}=x_{j i}, \quad x_{j 1}^{1}=x_{1 i}^{1}=0, \quad x_{11}^{1}=1 .
$$

Then ($\left.X^{1}\right)^{\prime}$ is always a sandwich whether X is so or not. Let $X=\left(x_{j i}\right), j \in M$, $i \in I$, and for each $B \in \mathscr{P}(M), A \in \mathscr{P}(I)$, define a set $X_{B A}=\left\{x_{j i}: j \in B, i \in A\right\}$. Given an $M \times I$-matrix $X=\left(x_{j i}\right)$ over $\{0,1\}$, we define a $\mathscr{P}(M) \times \mathscr{P}(I)$-matrices \tilde{X} and \bar{X} as follows:

$$
\begin{aligned}
& \tilde{X}=\left(\tilde{x}_{B A}\right), \quad \tilde{x}_{B A}= \begin{cases}1 & \text { if } 1 \in X_{B A} \\
0 & \text { if } X_{B A}=\{0\},\end{cases} \\
& \bar{X}=\left(\bar{x}_{B A}\right), \quad \bar{x}_{B A}= \begin{cases}1 & \text { if } X_{B A}=\{1\} \\
0 & \text { if } 0 \in X_{B A} .\end{cases}
\end{aligned}
$$

