101. Sugawara Operators and their Applications to Kac-Kazhdan Conjecture

By Takahiro HAYASHI

Department of Mathematics, Nagoya University

(Communicated by Kunihiko KODAIRA, M. J. A., Nov. 12, 1987)

§1. Introduction. Let $\mathfrak{g}=\mathfrak{n}_-\oplus\mathfrak{h}\oplus\mathfrak{n}_+$ be an affine Kac-Moody Lie algebra of type $X_l^{(1)}$ and its triangular decomposition. A \mathfrak{g} -module V is called a highest weight module (HWM) with highest weight (HW) $\lambda \in \mathfrak{h}^*$ if V is generated by a vector $v_{\lambda} \in V$ such that

$$hv_{\lambda} = \langle \lambda, h \rangle v_{\lambda}$$
 ($h \in \mathfrak{h}$) and $\mathfrak{n}_{+}v_{\lambda} = 0$.

We call v_{λ} the highest weight vector of V. There exists the unique n_{\perp} -free HWM $M(\lambda)$ with HW λ . We call it the Verma module of g with HW λ . There also exists the unique irreducible HWM with HW λ and we denote it by $L(\lambda)$.

For an HWM V and $\mu \in \mathfrak{h}^*$, set $V_{\mu} = \{v \in V \mid hv = \langle \mu, h \rangle v \ (h \in \mathfrak{h})\}$. Then V is isomorphic to the direct sum of V_{μ} 's and dim $V_{\mu} < \infty$ for each $\mu \in \mathfrak{h}^*$. Hence we can define its formal character by

ch
$$V = \sum_{\mu \in \mathfrak{h}^*} (\dim V_{\mu}) e^{\mu}$$
.

Here e^{μ} denotes the formal exponential.

The character of the Verma module is given by

ch
$$M(\lambda) = e^{\lambda} \prod_{\alpha \in A_+} (1 - e^{-\alpha})^{-\dim g_{\alpha}}.$$

where Δ_{+} denotes the set of the positive root of g.

For a dominant integral weight λ , the character of the irreducible HWM $L(\lambda)$ is well known as the celebrated Weyl-Kac character formula. However it is difficult to determine ch $L(\lambda)$ for general weight λ . V. G. Kac and D. A. Kazhdan [4] proposed a study of the irreducible HWM $L(-\rho)$ and gave a conjecture:

ch
$$L(-\rho) = e^{-\rho} \prod_{\alpha \in \mathcal{A}_{+}^{re}} (1 - e^{-\alpha})^{-1}$$
,

where ρ is the normalized half sum of the positive roots, and $\mathcal{I}_{+}^{\text{re}}$ is the set of positive real roots.

We give the affirmative result for this conjecture in a more general situation.

Definition. Let c be the canonical central element of g and $g = \langle \rho, c \rangle$ be the dual Coxeter number of g. For a $\lambda \in \mathfrak{h}^*$ with the level $\langle \lambda, c \rangle = -g$, we say that λ is a *KK-weight* if $\langle \lambda + \rho, \alpha^{\vee} \rangle \notin \mathbb{Z}_{>0}$ for each real positive coroot α^{\vee} .

Remark that $-\rho$ is a *KK*-weight. Then one of our main results is the following.

Theorem A. Let g be an affine Lie algebra of type $A_i^{(1)}$, $B_i^{(1)}$ or $C_i^{(1)}$.