11. On a Problem of Yamamoto Concerning Biquadratic Gauss Sums

By Hiroshi Ito
Department of Mathematics, Faculty of Science, Nagoya University
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1987)

Yamamoto [4] observed some relations, which can be stated as (I)~(IV) below, between the biquadratic Gauss sums and the generalized Bernoulli numbers defined for prime numbers $p<4,000$ such that $p \equiv 1(\bmod 4)$. He proposed the question whether these relations were always true. In this note, we report counter-examples to (I) \sim (III) and prove (IV). Some remarks on a problem which still remains will be added.

1. For a prime number $p \equiv 1(\bmod 4)$, take positive integers a and b such that $p=a^{2}+4 b^{2}$ and put $\omega=\omega_{p}:=a+2 b i$. Define the Dirichlet character $\chi=\chi_{p}$ modulo p by $\chi(m)=(m / \omega)_{4}$ where $(m / \omega)_{4}$ is the biquadratic residue symbol in $\boldsymbol{Q}(i)$, the Gauss' number field. Consider the Gauss sum

$$
\tau(\chi)=\sum_{m=1}^{p-1} \chi(m) e^{2 \pi i m / p}
$$

We write

$$
\tau(\chi)=\varepsilon_{p} \omega^{1 / 2} p^{1 / 4} \quad \text { with } \quad 0<\arg \left(\omega^{1 / 2}\right)<\pi / 4
$$

It is a classical result that $\varepsilon_{p}^{4}=1$. On the other hand we put

$$
A_{p}=-\frac{1}{p} \sum_{m=1}^{p-1} \chi(m) m, \quad B_{p}=-\frac{1}{p} \sum_{m=1}^{(p-1) / 2} \chi(m) m, \quad C_{p}=\sum_{m=1}^{(p-1) / 2} \chi(m)
$$

Then the assertions (I) $\sim(I V)$ in [4] (p. 212) can be stated as follows:
(IV)

$$
\begin{array}{ll}
-\pi / 4 \leq \arg \left(\varepsilon_{p} \bar{A}_{p}\right)<3 \pi / 4 & \text { if } p \equiv 5(\bmod 8), \\
-\pi \leq \arg \left(\varepsilon_{p} \bar{B}_{p}\right)<0 & \text { if } p \equiv 5(\bmod 8), \\
\operatorname{Im}\left(\varepsilon_{p} \bar{C}_{p}\right)>0 & \text { if } p \equiv 5(\bmod 8), \tag{III}\\
\operatorname{Re}\left(\varepsilon_{p} \bar{B}_{p}\right)>0 & \text { if } p \equiv 1(\bmod 8),
\end{array}
$$

where the bar indicates the complex conjugation. Note that $A_{p}=C_{p}=0$ if $p \equiv 1(\bmod 8)$, when the character χ satisfies $\chi(-1)=1$.

At the time when [4] was published, the calculation of ε_{p} was very hard. Now we have an elegant expression of ε_{p} obtained by Matthews [3]. Define $\delta_{p} \in\{1,-1\}$ by

$$
\{(p-1) / 2\}!\equiv \delta_{p} i(\bmod \omega)
$$

Then it follows from [3] that

$$
\varepsilon_{p}=-\delta_{p} \chi(2 i)\left(\frac{b}{a}\right)_{2} \times \begin{cases}i & \text { if } a \equiv 1(\bmod 4), \\ 1 & \text { if } a \equiv 3(\bmod 4),\end{cases}
$$

where $(b / a)_{2}$ is the (rational) Jacobi symbol. By means of this expression for ε_{p}, the author examined, with the help of an electronic computer, the assertions (I) \sim (III) for $p<1,000,000$ and found counter-examples. There

