11. On a Problem of Yamamoto Concerning Biquadratic Gauss Sums

By Hiroshi Ito

Department of Mathematics, Faculty of Science, Nagoya University

(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1987)

Yamamoto [4] observed some relations, which can be stated as (I) \sim (IV) below, between the biquadratic Gauss sums and the generalized Bernoulli numbers defined for prime numbers p < 4,000 such that $p \equiv 1 \pmod{4}$. proposed the question whether these relations were always true. In this note, we report counter-examples to $(I) \sim (III)$ and prove (IV). remarks on a problem which still remains will be added.

1. For a prime number $p \equiv 1 \pmod{4}$, take positive integers a and b such that $p=a^2+4b^2$ and put $\omega=\omega_p:=a+2bi$. Define the Dirichlet character $\chi = \chi_p$ modulo p by $\chi(m) = (m/\omega)_4$ where $(m/\omega)_4$ is the biquadratic residue symbol in Q(i), the Gauss' number field. Consider the Gauss sum

$$\tau(\chi) = \sum_{m=1}^{p-1} \chi(m) e^{2\pi i m/p}.$$

We write

$$\tau(\chi) = \varepsilon_p \omega^{1/2} p^{1/4}$$
 with $0 < \arg(\omega^{1/2}) < \pi/4$.

It is a classical result that $\varepsilon_p^4 = 1$. On the other hand we put

$$A_p = -rac{1}{p} \sum_{m=1}^{p-1} \chi(m)m, \quad B_p = -rac{1}{p} \sum_{m=1}^{(p-1)/2} \chi(m)m, \quad C_p = \sum_{m=1}^{(p-1)/2} \chi(m).$$

Then the assertions (I) \sim (IV) in [4] (p. 212) can be stated as follows:

- $-\pi/4 \le \arg(\varepsilon_n \overline{A}_p) < 3\pi/4$ if $p \equiv 5 \pmod{8}$, (I)
- $-\pi \leq \arg(\varepsilon_p \overline{B}_p) < 0$ $\operatorname{Im}(\varepsilon_p \overline{C}_p) > 0$ $\operatorname{Re}(\varepsilon_e \overline{B}_e) > 0$ (II)if $p \equiv 5 \pmod{8}$.
- (III) if $p \equiv 5 \pmod{8}$,

(IV) Re
$$(\varepsilon_n \overline{B}_n) > 0$$
 if $p \equiv 1 \pmod{8}$,

where the bar indicates the complex conjugation. Note that $A_p = C_p = 0$ if $p \equiv 1 \pmod{8}$, when the character χ satisfies $\chi(-1) = 1$.

At the time when [4] was published, the calculation of ε_p was very hard. Now we have an elegant expression of ε_p obtained by Matthews [3]. Define $\delta_p \in \{1, -1\}$ by

$$\{(p-1)/2\}$$
! $\equiv \delta_p i \pmod{\omega}$.

Then it follows from [3] that

$$\varepsilon_p = -\delta_p \chi(2i) \left(\frac{b}{a}\right)_2 \times \begin{cases} i & \text{if } a \equiv 1 \pmod{4}, \\ 1 & \text{if } a \equiv 3 \pmod{4}, \end{cases}$$

where $(b/a)_2$ is the (rational) Jacobi symbol. By means of this expression for ε_p , the author examined, with the help of an electronic computer, the assertions (I) \sim (III) for p < 1,000,000 and found counter-examples. There