97. On a Class of Partially Hypoelliptic Microdifferential Equations

By Nobuyuki Tose and Moto-o Uchida
Department of Mathematics, Faculty of Science, University of Tokyo
(Communicated by Kôsaku Yosida, m. J. A., Nov. 12, 1987)

§ 1. Introduction. We study a class of microdifferential equations with double characteristics which are non-hyperbolic. Explicitly, let M be a real analytic manifold with a complexification X and let P be a microdifferential operator defined in a neighborhood of $\rho_{0} \in \dot{T}_{M}^{*} X\left(=T_{M}^{*} X \backslash M\right)$ whose principal symbol is written as
(1)

$$
p=\sigma(P)=p_{1}+\sqrt{-1} q_{1}^{2 m} \cdot p_{2}
$$

in a neighborhood of ρ_{0}. Here p_{1}, p_{2} and q_{1} are homogeneous holomorphic functions of order 1, 1 and 0 respectively, which are defined in a neighborhood of ρ_{0}. We assume that p_{1}, p_{2} and q_{1} satisfy the following conditions (2)-(6).
(2) $\quad p_{1}, p_{2}$ and q_{1} are real valued on $T_{M}^{*} X$.
(3) $d p_{1}, d p_{2}$ and ω (the canonical 1-form of $T_{M}^{*} X$) are linearly independent at ρ_{0}.
(4) $\left\{p_{1}, p_{2}\right\}=0$ if $p_{1}=p_{2}=0$ where $\{\cdot, \cdot\}$ denotes Poisson bracket on $T_{M}^{*} X$.

$$
\begin{gather*}
\left\{p_{1}, q_{1}\right\} \neq 0 \text { at } \rho_{0} . \tag{5}\\
p_{1}\left(\rho_{0}\right)=p_{2}\left(\rho_{0}\right)=q_{1}\left(\rho_{0}\right)=0 . \tag{6}
\end{gather*}
$$

We give a theorem concerning the propagation of singularities of solutions to $P u=0$ on the regular involutory submanifold

$$
\Sigma=\left\{\rho \in \dot{T}_{M}^{*} X ; p_{1}(\rho)=p_{2}(\rho)=0\right\}
$$

Precisely, we will show $\operatorname{supp}(u)$ is a union of bicharacteristic leaves of Σ for any $u \in \mathcal{C}_{M, \rho_{0}}$ satisfying $P u=0$. Interesting is the fact that P is hypoelliptic in the framework of 2 -microlocalization.
§2. Preliminary. Let M be a real analytic manifold with a complexification X and Σ be a regular involutory submanifold of $\dot{T}_{M}^{*} X$. Take a complexification Λ of Σ in $T^{*} X$. Then $\tilde{\Sigma}$ denotes the union of all bicharacteristic leaves of Λ eminated from Σ. On $T_{\Sigma}^{*} \tilde{\Sigma}$, M. Kashiwara constructed the sheaf \mathcal{C}_{Σ}^{2} of 2-microfunctions along Σ. (See Kashiwara-Laurent [2] for details about \mathcal{C}_{Σ}^{2}.) We can study the properties of microfunctions on Σ precisely by \mathcal{C}_{Σ}^{2}. Actually, we have the following exact sequences (7) and (8).
(8)

$$
\begin{equation*}
\left.0 \longrightarrow \mathcal{C}_{\tilde{\Sigma}}\right|_{\Sigma} \longrightarrow \mathcal{B}_{\Sigma}^{2} \longrightarrow \dot{\pi}_{*}\left(\left.\mathcal{C}_{\Sigma}^{2}\right|_{r_{\Sigma}^{*} \tilde{\Sigma} \backslash \Sigma}\right) \longrightarrow 0 . \quad\left(\dot{\pi}: T_{\Sigma}^{*} \tilde{\Sigma} \backslash \Sigma \longrightarrow \Sigma .\right) \tag{7}
\end{equation*}
$$

Here $\mathcal{C}_{\tilde{\Sigma}}$ is the sheaf of microfunctions along $\tilde{\Sigma}$ and $\mathscr{B}_{\Sigma}^{2}=\left.\mathcal{C}_{\Sigma}^{2}\right|_{\Sigma}$.
Moreover there exists the canonical spectral map

$$
\begin{equation*}
S p_{\Sigma}^{2}: \pi^{-1} \mathscr{B}_{\Sigma}^{2} \longrightarrow \mathcal{C}_{\Sigma}^{2} \quad\left(\pi: T_{\Sigma}^{*} \tilde{\Sigma} \longrightarrow \Sigma\right) \tag{9}
\end{equation*}
$$

