94. Necessary and Sufficient Conditions for the Convergence of Formal Solutions

By Masafumi Yoshino

Department of Mathematics, Tokyo Metropolitan University (Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1987)

- § 1. Introduction. In this paper we shall give a necessary and sufficient condition for the convergence of formal solutions of certain type of analytic equations of general independent variables. The result here is an extension of that of [3] to equations of general independent variables, which coincides with the result of [3] in the case of two independent variables.
- § 2. Statement of results. Let $x=(x_1,\cdots,x_d)$ $(d\geq 2)$ be the variable in C^d . For $\eta\in R^d$ and a multi-index $\alpha=(\alpha_1,\cdots,\alpha_d)\in N^d$, $N=\{0,1,2,\cdots\}$, we set $\eta^a=\eta_1^{\alpha_1}\cdots\eta_d^{\alpha_d}$ and $(x\cdot\partial)^\alpha=(x_1\partial_1)^{\alpha_1}\cdots(x_d\partial_d)^{\alpha_d}$, where $\partial=(\partial_1,\cdots,\partial_d)$ and $\partial_j=\partial/\partial x_j$ $(j=1,\cdots,d)$. Let $m\geq 1$ be an integer and let $\omega\in C^d$. Then we are concerned with the convergence of all formal solutions of the form $u(x)=x^\omega\sum_{\eta\in N^d}u_\eta x^\eta/\eta!$ of the equation

(2.1)
$$P(x; \partial)u \equiv \sum_{|\alpha| \le m} a_{\alpha}(x)\partial^{\alpha}u(x) = f(x)x^{\omega}$$

where $a_{\alpha}(x)$ is analytic at the origin and f(x) is a given analytic function. We say that a formal solution $u=x^{\omega}\sum_{\gamma\in N^d}u_{\gamma}x^{\gamma}/\gamma!$ converges if the sum $\sum_{\gamma\in N^d}u_{\gamma}x^{\gamma}/\gamma!$ converges and represents an analytic function in x. Let us expand $a_{\alpha}(x)$ into the power of x, $a_{\alpha}(x)=\sum_{\gamma}a_{\alpha,\gamma}x^{\gamma}/\gamma!$, and let us define

(2.2)
$$M_P = \{ \gamma - \alpha \in \mathbb{Z}^d : \alpha_{\alpha,\gamma} \neq 0 \text{ for some } \alpha \text{ and } \gamma \}.$$

Then we assume

(A.1) $M_P \subset \{ \eta \in \mathbf{R}^d ; \eta_1 + \cdots + \eta_d \geq 0 \}$ and $M_P \cap \{ \eta \in \mathbf{R}^d ; \eta_1 + \cdots + \eta_d = 0 \}$ is contained in some proper cone with apex at the origin.

We define the set Γ_0 by Γ_0 =Convex hull of $\{t\theta \in \mathbf{R}^a : t \geq 0, \theta \in M_P\}$.

We set $p(\eta) = \sum_{|\alpha| \le m} a_{\alpha,\alpha} x^{\alpha} \partial^{\alpha} / a!$, and we denote by $p_{m}(\eta)$ the *m*-th homogeneous part of $p(\eta)$. For $\xi \in \mathbf{R}^{a}$, $|\xi| = 1$, we set $\Gamma(\xi; \varepsilon) = \{ \eta \in \mathbf{R}^{a}; |\eta/|\eta| - \xi | < \varepsilon \}$. Then we define the quantity $\sigma_{\xi,\varepsilon}$ by

(2.3)
$$\sigma_{\xi,\varepsilon} = \sup\{c \in \mathbf{R}; \liminf_{|\eta| \to \infty, \eta \in \Gamma(\xi,\varepsilon) \cap \mathbf{Z}^d} |\eta|^{-c} |p(\eta+\omega)| > 0\},$$

where if $\liminf |\eta|^{-\epsilon} |p(\eta+\omega)| = 0$ for every $c \in \mathbb{R}$, we put $\sigma_{\xi,\epsilon} = -\infty$. Note that $\sigma_{\xi,\epsilon} \leq m$, since $p(\eta+\omega)$ is of degree m. Since $\sigma_{\xi,\epsilon}$ increases as ϵ tends to zero, we set $\sigma_{\xi} \equiv \lim_{\epsilon \downarrow 0} \sigma_{\xi,\epsilon}$. For the fundamental property of σ_{ξ} we refer to [3].

We define a differential operator $Q(x; \partial) \equiv \sum_{|\beta| \le m_0} b_{\beta}(x) \partial^{\beta}$ by $Q(x; \partial) = P(x, \partial) - \sum_{|\alpha| \le m} a_{\alpha,\alpha} x^{\alpha} / \alpha!$,

where $m_0 \leq m$.

Let us take θ , $|\theta|=1$ such that $p_m(\theta)\neq 0$. We write $\eta=\zeta_1\theta+\zeta'$, $\zeta'=$