10. The Dimension Formula of the Space of Cusp Forms of Weight One for $\Gamma_{0}(p)$

By Hirofumi Ishikawa*) and Yosio Tanigawa**)

(Communicated by Shokichi Iyanaga, m. J. a., Feb. 12, 1987)

1. Introduction and the statement of the results. We fix an odd prime number p throughout this paper. Let $\Gamma=\Gamma_{0}(p)$ and χ be a Dirichlet character modulo p satisfying $\chi(-1)=-1$. We regard χ as a character of $\Gamma_{0}(p)$ by $\chi(\sigma)=\chi(d)\left(\sigma=\left[\begin{array}{l}a, b \\ c, d\end{array}\right]\right)$. The purpose of this note is to offer the dimension formula of $S_{1}\left(\Gamma_{0}(p)\right.$, χ), using Selberg's trace formula. Coauthors obtained the results independently, but decided to publish them together. Details will be published elsewhere.

Let S be the upper half-plane and $G=S L_{2}(\boldsymbol{R})$. Put $\tilde{S}=S \times(\boldsymbol{R} / 2 \pi Z)$. G acts on \tilde{S} as in [4]. Let $M(\lambda)$ denote the space of f in $L^{2}(\Gamma \backslash \tilde{S}, \chi)$ such that

$$
\tilde{\Delta} f=\lambda f, \frac{\partial}{\partial \phi} f=-i f\left(\tilde{\Delta}=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+\frac{5}{4} \frac{\partial^{2}}{\partial \phi^{2}}+y \frac{\partial}{\partial x} \frac{\partial}{\partial \phi}\right) .
$$

Put $\lambda_{0}=-3 / 2$. Let $-3 / 2>\lambda_{1}>\lambda_{2}>\lambda_{3}>\ldots$ be the set of all discrete spectrums of $\tilde{\Delta}$ in $L_{0}^{2}(\Gamma \backslash \tilde{S}, \chi)$ such that $M\left(\lambda_{i}\right) \neq\{0\}$. It follows from [3] that $S_{1}\left(\Gamma_{0}(p), \chi\right)$ is isomorphic to $M\left(\lambda_{0}\right)$. Put $d_{i}=\operatorname{dim}\left(M\left(\lambda_{i}\right)\right), \lambda_{i}=-r_{i}^{2}-(3 / 2)$.

For an integral operator K_{o}^{*} (see below), we can rewrite Selberg's trace formula.

Theorem 1. For $\operatorname{Re}(\delta)>0$, we have

$$
\begin{align*}
& \sum_{i=0}^{\infty} h_{\delta}\left(r_{i}\right) \cdot d_{i}=J(I d, \delta)+J\left(E_{2}, \delta\right)+J\left(E_{3}, \delta\right)+J(H y p, \delta)+J(\infty, \delta)+J(0, \delta) \tag{1}\\
& J(I d, \delta)=2 \pi \text { volume }(\Gamma \backslash S)=(2 / 3) \pi^{2}(p+1), \quad J\left(E_{2}, \delta\right)=0 \\
& J\left(E_{3}, \delta\right)=\frac{8 \pi^{2}}{3 \sqrt{-3} \delta}\left\{F\left(1, \frac{\delta}{2}, 1+\delta ; \omega\right)-F\left(1, \frac{\delta}{2}, 1+\delta ; \bar{\omega}\right)\right\} \alpha_{p} \beta_{\chi} \\
& J(H y p, \delta)=2^{\delta+2} \pi B\left(\frac{1}{2}, \frac{1+\delta}{2}\right) z(\delta, \chi) \\
& J(\infty, \delta)=J(0, \delta)=\log \left(\pi / 2 p^{3 / 2}\right) g_{\delta}(0)+\frac{\Gamma\left(\frac{1+\delta}{2}\right) \Gamma\left(\frac{3+\delta}{2}\right)}{4 \Gamma\left(1+\frac{\delta}{2}\right)^{2}} h_{1+\delta}(0) \\
& -\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(h_{\delta}(r)+h_{1+\delta}(r) \frac{\Gamma\left(\frac{1+\delta}{2}\right) \Gamma\left(\frac{3+\delta}{2}\right)}{\Gamma\left(1+\frac{\delta}{2}\right)^{2}}\right) \psi(1+i r) d r
\end{align*}
$$

[^0]
[^0]: *) Department of Mathematics, College of Arts and Sciences, Okayama University.
 **) Department of Mathematics, Faculty of Science, Nagoya University.

