86. Information and Statistics. II

By Yukiyosi Kawada
Faculty of Science, University of Tokyo
(Communicated by Shokichi Iyanaga, m. J. a., Oct. 12, 1987)

This is a continuation of Kawada [0]. We use the same notations.
II. L-sets and informations. 1. Let $\boldsymbol{p}=\left(p_{1}, \cdots, p_{m}\right)$ and $\boldsymbol{q}=\left(q_{1}, \cdots\right.$, q_{m}) be probability distributions. We call the set

$$
\begin{equation*}
\boldsymbol{L}(\boldsymbol{p}, \boldsymbol{q})=\left\{(x, y) \mid x=\sum_{k=1}^{m} \alpha_{k} p_{k}, y=\sum_{k=1}^{m} \alpha_{k} \alpha_{k}, 0 \leqq \alpha_{k} \leqq 1, k=1, \cdots, m\right\} \tag{9}
\end{equation*}
$$

the Liapunov-set (simply L-set) of the pair ($\boldsymbol{p}, \boldsymbol{q}$). See Kudo [6], [7].
$L(p, q)$ has the following properties:
(i) $L(p, q)=\Delta$ (the diagonal segment joining $(0,0)$ and $(1,1))$ if and only if $p=q$.
(ii) $L(p, q)$ contains the points $(0,0)$ and $(1,1)$.
(iii) $L(p, q)$ is contained in the square $[0,1] \times[0,1]$.
(iv) $L(p, q)$ is a symmetric convex set with the center $(1 / 2,1 / 2)$.
(v) Let the indices of (p_{k}, q_{k}) be so substituted that

$$
0 \leqq\left(q_{1} / p_{1}\right) \leqq\left(q_{2} / p_{2}\right) \leqq \cdots \leqq\left(q_{m} / p_{m}\right) \leqq \infty
$$

holds. Then

$$
L(\boldsymbol{p}, \boldsymbol{q})=\{(x, y) \mid \varphi(x) \leqq y \leqq \psi(x), 0 \leqq x \leqq 1\}
$$

where $\varphi(x)$ is a polygon with $m+1$ vertices

$$
(0,0),\left(p_{1}, q_{1}\right),\left(p_{1}+p_{2}, q_{1}+q_{2}\right), \cdots,\left(p_{1}+\cdots+p_{m-1}, q_{1}+\cdots+q_{m-1}\right),(1,1)
$$

and $\psi(x)$ is a polygon with $m+1$ vertices

$$
\begin{aligned}
& (0,0),\left(p_{m}, q_{m}\right),\left(p_{m}+p_{m-1}, q_{m}+q_{m-1}\right), \cdots, \\
& \left(p_{m}+p_{m-1}+\cdots+p_{2}, q_{m}+q_{m-1}+\cdots+q_{2}\right),(1,1) .
\end{aligned}
$$

Theorem 6. A function $I(p, q)$ for any pair of finite probability distributions (p, q) is an information if and only if
(i) $L(p, q)=\Delta \Rightarrow I(p, q)=0$,
(ii) $L(p, q)=L\left(p^{\prime}, q^{\prime}\right) \Rightarrow I(p, q)=I\left(p^{\prime}, q^{\prime}\right)$,
(iii) $L(p, q) \supseteq L\left(p^{\prime}, q^{\prime}\right) \Rightarrow I(p, q)>I\left(p^{\prime}, q^{\prime}\right)$.

Namely, an information I is characterized by the property that I is a monotone functional of the family of all L-sets with $I=0$ for $L=\Delta$.
2. (i) We can characterize a fundamental information I geometrically as

$$
\begin{equation*}
I_{K}(\boldsymbol{p}, \boldsymbol{q})=\int_{C} K(d \varphi / d x) d x \tag{10}
\end{equation*}
$$

where $K(x)$ is a non-negative differentiable function with $K(1)=K^{\prime}(1)=0$, $K^{\prime \prime}(x)>0, \varphi(x)$ is the polygon defined as above and the integral is the curvilinear integral along the polygon $C: y=\varphi(x)$.

In particular, if we put

