85. Reduced Group C*-Algebras with the Metric Approximation Property by Positive Maps

By Masatoshi Enomoto*) and Yasuo Watatani**)
(Communicated by Kôsaku Yosida, m. J. A., Oct. 12, 1987)

1. Introduction. Choi and Effros [3] and Kirschberg [6] have proved that the nuclearity for a C^{*}-algebra is equivalent to "the complete positive approximation property". Not all C^{*}-algebras have the approximation property. In fact, A. Szankowski [8] has proved, that the algebra of all bounded operators $B(H)$ on an infinite dimensional Hilbert space H, does not have the approximation property. It had been believed that every C^{*} algebra with the metric approximation property is nuclear. Surprisingly, in 1979, Uffe Haagerup [5] showed an example of a non-nuclear C^{*}-algebra, which has the metric approximation property. Haagerup's example is the reduced group C^{*}-algebra $C_{r}^{*}\left(F_{2}\right)$ of the free group on two generators F_{2}. In the sequel, Canniere and Haagerup [1] showed that for any fixed $n \in N$, the identity map of $C_{r}^{*}\left(F_{2}\right)$ can be approximated by n-positive finite rank operators on $C_{r}^{*}\left(F_{2}\right)$. In this note, we shall show that the identity map of the reduced group C^{*}-algebras generated by the free product of finite groups with one amalgamated subgroup can be approximated by n-positive maps as well. This is an improvement of our previous result in [4].
2. Results. Let $G=A \underset{C}{*} B$ be the free product of two finite groups A and B with one amalgamated subgroup C (cf. [7]). Then there is a tree X on which G acts as follows: Put
$V(X)=(G / A) \cup(G / B)($ disjoint union $)$, the set of vertices of X.
$E(X)=(G / C) \cup \overline{(G / C)}$ (disjoint union), the set of edges of X.

The source map $s: G / C \rightarrow G / A$ and the range map $r: G / C \rightarrow G / B$ are induced by the inclusions $C \rightarrow A$ and $C \rightarrow B$. An action of G on the tree X is given by $g \cdot(x A)=(g x) A \in V(X), g \cdot(x B)=(g x) B \in V(X)$ and $g \cdot(x C)=(g x) C \in E(X)$ for all g, x in G. Put $P_{0}=A \in V(X)$. For g in G, define $\Psi(g)=d\left(P_{0}, g P_{0}\right)$ to be the distance from P_{0} to $g P_{0}$. Then Ψ is a length function on G [2], [9] such that $\Psi(g)$ is an even integer for all $g \in G$. Note that edges of X consist of

$$
x A \circ \stackrel{\{x C, \overline{x C}\}}{ } \circ x B \quad x \in G
$$

If $d\left(P_{0}, Q\right)$ is even (resp. odd) for $Q \in V(X)$, then $Q=g A=g P_{0}$ (resp. $Q=g B$) for some $g \in G$. For s in G and integers $k, l \geqq 0$, put

[^0]
[^0]: *) College of Business Administration and Information Science, Koshien University, Takarazuka, Hyogo, 665, Japan.
 **) Department of Mathematics, Osaka Kyoiku University, Tennoji, Osaka, 543, Japan.

