85. Reduced Group C*-Algebras with the Metric Approximation Property by Positive Maps

By Masatoshi ENOMOTO*) and Yasuo WATATANI**)
(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1987)

- 1. Introduction. Choi and Effros [3] and Kirschberg [6] have proved that the nuclearity for a C^* -algebra is equivalent to "the complete positive approximation property". Not all C^* -algebras have the approximation property. In fact, A. Szankowski [8] has proved, that the algebra of all bounded operators B(H) on an infinite dimensional Hilbert space H, does not have the approximation property. It had been believed that every C^* algebra with the metric approximation property is nuclear. Surprisingly, in 1979, Uffe Haagerup [5] showed an example of a non-nuclear C^* -algebra, which has the metric approximation property. Haagerup's example is the reduced group C^* -algebra $C_r^*(F_2)$ of the free group on two generators F_2 . In the sequel, Canniere and Haagerup [1] showed that for any fixed $n \in N$, the identity map of $C_r^*(F_2)$ can be approximated by *n*-positive finite rank operators on $C_r^*(F_2)$. In this note, we shall show that the identity map of the reduced group C^* -algebras generated by the free product of finite groups with one amalgamated subgroup can be approximated by n-positive maps as well. This is an improvement of our previous result in [4].
- 2. Results. Let G = A * B be the free product of two finite groups A and B with one amalgamated subgroup C (cf. [7]). Then there is a tree X on which G acts as follows: Put

 $V(X) = (G/A) \cup (G/B)$ (disjoint union), the set of vertices of X.

 $E(X) = (G/C) \cup (\overline{G/C})$ (disjoint union), the set of edges of X.

The source map $s: G/C \to G/A$ and the range map $r: G/C \to G/B$ are induced by the inclusions $C \to A$ and $C \to B$. An action of G on the tree X is given by $g \cdot (xA) = (gx)A \in V(X)$, $g \cdot (xB) = (gx)B \in V(X)$ and $g \cdot (xC) = (gx)C \in E(X)$ for all g, x in G. Put $P_0 = A \in V(X)$. For g in G, define $\Psi(g) = d(P_0, gP_0)$ to be the distance from P_0 to gP_0 . Then Ψ is a length function on G[2], [9] such that $\Psi(g)$ is an even integer for all $g \in G$. Note that edges of X consist of

$$xA \circ \frac{\{xC, \overline{xC}\}}{} \circ xB \qquad x \in G$$

If $d(P_0, Q)$ is even (resp. odd) for $Q \in V(X)$, then $Q = gA = gP_0$ (resp. Q = gB) for some $g \in G$. For s in G and integers k, $l \ge 0$, put

^{*} College of Business Administration and Information Science, Koshien University, Takarazuka, Hyogo, 665, Japan.

^{**} Department of Mathematics, Osaka Kyoiku University, Tennoji, Osaka, 543, Japan.