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1. Introduction. In the traditional definition of K. ItS’s stochastic
integral of a process with respect to Brownian motion B it is essential
that be non-anticipatory [8]. However, there are some works in which
one has tried to avoid this condition, s. e.g. [1, 4, 9]. Finally, the white
noise analysis, advocated by T. Hida (e.g. [2, 3]), has provided a framework,
in which stochastic integrals can be naturally defined without posing such
measurability conditions, as has been shown in a recent paper by H.-H. Kuo
and A. Russek [7].

Let (q’(R), ., d) be white noise, i.e. is the a-algebra over q’(R)
generated by the cylinder sets and/ is the Gaussian measure on with
characteristic functional

(1.1) exp (--1/2 [[[[)=; exp(i(x,))d/(x)
’(R)

for e 2(R), ]]. ]1 denoting the norm of U(R, dr) and (.,.) the canonical
duality. By (L), p0, we denote the Banach space L(q’(R), ., dp). Note
that
(1.2) B(t x) := (x, 1(0.)), x e q’(R)
(although not pointwise defined) is a well-defined random variable in (LP),
pl, and a Brownian motion (under d).

In [2,3] Hida introduced the space (L) of testfunctionals of white
noise and its dual (L) of generalized functionals. Furthermore he defined
the operators 3,, t e R, which are partial derivatives O/Ox(t)for white noise
testfunctionals, cf. also [5, 6]. Since is densely defined on (L) there is
its adjoint 3* acting on (L) -. Note that we have the Gel’land triple
(1.3) (L) (L) (L)
so that * acts by restriction on (U).

The following was shown in the paper [7] of Kuo and Russek assume
that p is a map from R/ into (L), non-anticipatory (i.e. for each e R+, (t)
is measurable w.r.t, a(B(s; .), Ogst)) and

(1.4) .[ E(, 9(t)[2)dt
is. finite, then

(1.5) .[i. 3*(t)dt
exists in (L) and equals ItS’s stochastic integral of 9 w.r.t. Brownian
motion. Of course, this generalizes to higher-dimensional Brownian


