80. A Generalization of Itô's Lemma

By J. Asch and J. Potthoff
Department of Mathematics, Technical University, Berlin, FRG
(Communicated by Kôsaku Yosida, m. J. A., Oct. 12, 1987)

1. Introduction. In the traditional definition of K. Itô's stochastic integral of a process φ with respect to Brownian motion B it is essential that φ be non-anticipatory [8]. However, there are some works in which one has tried to avoid this condition, s. e.g. [1, 4, 9]. Finally, the white noise analysis, advocated by T. Hida (e.g. [2, 3]), has provided a framework, in which stochastic integrals can be naturally defined without posing such measurability conditions, as has been shown in a recent paper by H.-H. Kuo and A. Russek [7].

Let $\left(\mathcal{S}^{\prime}(\boldsymbol{R}), \mathcal{B}, d \mu\right)$ be white noise, i.e. \mathcal{B} is the σ-algebra over $\mathcal{S}^{\prime}(\boldsymbol{R})$ generated by the cylinder sets and μ is the Gaussian measure on \mathcal{B} with characteristic functional

$$
\begin{equation*}
\exp \left(-1 / 2\|\xi\|_{2}^{2}\right)=\int_{S^{\prime}(R)} \exp (i\langle x, \xi\rangle) d \mu(x) \tag{1.1}
\end{equation*}
$$

for $\xi \in \mathcal{S}(\boldsymbol{R}),\|\cdot\|_{2}$ denoting the norm of $L^{2}(\boldsymbol{R}, d t)$ and $\langle\cdot, \cdot\rangle$ the canonical duality. By $\left(L^{p}\right), p>0$, we denote the Banach space $L^{p}\left(\mathcal{S}^{\prime}(\boldsymbol{R}), \mathscr{B}, d \mu\right)$. Note that
(1.2) $\quad B(t ; x):=\left\langle x, \mathbf{1}_{(0, t)}\right\rangle, \quad x \in \mathcal{S}^{\prime}(\boldsymbol{R})$
(although not pointwise defined) is a well-defined random variable in (L^{p}), $p \geq 1$, and a Brownian motion (under $d \mu$).

In [2,3] Hida introduced the space $\left(L^{2}\right)^{+}$of testfunctionals of white noise and its dual $\left(L^{2}\right)^{-}$of generalized functionals. Furthermore he defined the operators $\partial_{t}, t \in \boldsymbol{R}$, which are partial derivatives $\partial / \partial x(t)$ for white noise testfunctionals, cf. also [5,6]. Since ∂_{t} is densely defined on $\left(L^{2}\right)^{+}$there is its adjoint ∂_{t}^{*} acting on $\left(L^{2}\right)^{-}$. Note that we have the Gel'fand triple
$\left(L^{2}\right)^{-} \supseteq\left(L^{2}\right) \supseteq\left(L^{2}\right)^{+}$
so that ∂_{t}^{*} acts by restriction on $\left(L^{2}\right)$.
The following was shown in the paper [7] of Kuo and Russek: assume that φ is a map from \boldsymbol{R}_{+}into (L^{2}), non-anticipatory (i.e. for each $t \in \boldsymbol{R}_{+}, \varphi(t)$ is measurable w.r.t. $\sigma(B(s ; \cdot), 0 \leq s \leq t)$) and

$$
\begin{equation*}
\int_{a}^{b} \boldsymbol{E}\left(|\varphi(t)|^{2}\right) d t \tag{1.4}
\end{equation*}
$$

is finite, then

$$
\begin{equation*}
\int_{a}^{b} \partial_{t}^{*} \varphi(t) d t \tag{1.5}
\end{equation*}
$$

exists in (L^{2}) and equals Itô's stochastic integral of φ w.r.t. Brownian motion. Of course, this generalizes to higher-dimensional Brownian

