77. On Coefficients of Cyclotomic Polynomials

By Jiro Suzuki
Department of Mathematics, Sophia University
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 14, 1987)

Let $c_{i}^{(n)}$ be the coefficient of X^{i} in the n-th cyclotomic polynomial ; we put namely

$$
\Phi_{n}(X)=\prod_{d \mid n}\left(1-X^{i}\right)^{\mu(n / d)}=\sum_{i=0}^{\varphi(n)} c_{i}^{(n)} X^{i} .
$$

n being a positive integer and μ, φ denoting the Möbius and Euler functions, respectively. The purpose of this note is to prove the following.

Theorem. For any integer $s \in Z$, there exist n, i such that $c_{i}^{(n)}=s$.
In other words, the range C of $c_{i}^{(n)}$ for $n=1,2,3, \cdots$ covers the whole set Z of integers. It is obvious that $C \supset\{-1,0,1\}$ as $c_{1}^{(1)}=-1, c_{1}^{(4)}=0, c_{1}^{(2)}=1$, for example. If $n=p^{r}, p$ being a prime, we have $c_{i}^{(n)}=0$ or 1 , and it is shown in [1] that $c_{i}^{(n)} \in\{-1,0,1\}$ if $n=p q$ for distinct primes p, q. [2] describes a proof given by I. Schur of the fact that the absolute value of $c_{i}^{(n)}$ can be arbitrarily large, based on the following proposition (P) on the distribution of primes:
(P) Let t be any integer >2. Then there exist t distinct primes $p_{1}<p_{2}$ $<\cdots<p_{t}$ such that $p_{1}+p_{2}>p_{t}$.
The proof of (P) is not given in [2], but it is easy to supplement it as shown below, and complete the proof of the theorem by a simple observation.

Proof of (P). Fix an integer $t>2$ and suppose (P) to be false for t. Then for any t distinct primes $p_{1}<p_{2}<\cdots<p_{t}$, we should have $p_{1}+p_{2} \leq p_{t}$ so that $2 p_{1}<p_{t}$ which would imply that the number of primes between 2^{k-1} and 2^{k} is always less than t. Then $\pi\left(2^{k}\right)<k t$ contrary to the prime number theorem.

Proof of Theorem. Let t be any odd integer >2 and $p_{1}<p_{2}<\cdots<p_{t}$ t primes satisfying $p_{1}+p_{2}>p_{t}$. Let $p=p_{t}$ and $n=p_{1} p_{2} \cdots p_{t}$, and consider $\Phi_{n}(X) \bmod . X^{p+1}$ after Shur. We have obviously

$$
\begin{aligned}
\Phi_{n}(X) & \equiv \prod_{i=1}^{t}\left(1-X^{p_{i}}\right) /(1-X) \quad\left(\bmod X^{p+1}\right) \\
& \equiv\left(1+X+\cdots+X^{p}\right)\left(1-X^{p_{1}}-\cdots-X^{p_{t}}\right) \quad\left(\bmod X^{p+1}\right)
\end{aligned}
$$

This yields $c_{p}^{(n)}=-t+1, c_{p-2}^{(n)}=-t+2$, which shows $C \supset\{s \in Z ; s \leq-1\}$ as t takes any odd integral value ≥ 3.

For an odd positive integer m we have

$$
\Phi_{2 m}(X)=\Phi_{m}(-X) .
$$

As $n=p_{1} p_{2} \cdots p_{t}$ is odd for $p_{1} \geq 3$, this remark yields for the above n with $p_{1} \geq 3 c_{p}^{(2 n)}=t-1, c_{p-2}^{(2 n)}=t-2$ which implies $C \supset\{s \in Z ; s \geq 1\}$. Since $C \ni 0$, we have $C=Z$.

