77. On Coefficients of Cyclotomic Polynomials

By Jiro Suzuki

Department of Mathematics, Sophia University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1987)

Let $c_i^{(n)}$ be the coefficient of X^i in the *n*-th cyclotomic polynomial; we put namely

$$\Phi_n(X) = \prod_{d \mid n} (1 - X^d)^{\mu(n/d)} = \sum_{i=0}^{\varphi(n)} c_i^{(n)} X^i.$$

n being a positive integer and μ , φ denoting the Möbius and Euler functions, respectively. The purpose of this note is to prove the following.

Theorem. For any integer $s \in \mathbb{Z}$, there exist n, i such that $c_i^{(n)} = s$.

In other words, the range C of $c_i^{(n)}$ for $n=1, 2, 3, \cdots$ covers the whole set Z of integers. It is obvious that $C \supset \{-1, 0, 1\}$ as $c_1^{(1)} = -1, c_1^{(4)} = 0, c_1^{(2)} = 1$, for example. If $n = p^r$, p being a prime, we have $c_i^{(n)} = 0$ or 1, and it is shown in [1] that $c_i^{(n)} \in \{-1, 0, 1\}$ if n = pq for distinct primes p, q. [2] describes a proof given by I. Schur of the fact that the absolute value of $c_i^{(n)}$ can be arbitrarily large, based on the following proposition (P) on the distribution of primes:

(P) Let t be any integer >2. Then there exist t distinct primes $p_1 < p_2$ $< \cdots < p_t$ such that $p_1 + p_2 > p_t$.

The proof of (P) is not given in [2], but it is easy to supplement it as shown below, and complete the proof of the theorem by a simple observation.

Proof of (P). Fix an integer t>2 and suppose (P) to be false for t. Then for any t distinct primes $p_1 < p_2 < \cdots < p_t$, we should have $p_1 + p_2 \leq p_t$ so that $2p_1 < p_t$ which would imply that the number of primes between 2^{k-1} and 2^k is always less than t. Then $\pi(2^k) < kt$ contrary to the prime number theorem.

Proof of Theorem. Let t be any odd integer >2 and $p_1 < p_2 < \cdots < p_t$ t primes satisfying $p_1 + p_2 > p_t$. Let $p = p_t$ and $n = p_1 p_2 \cdots p_t$, and consider $\Phi_n(X)$ mod. X^{p+1} after Shur. We have obviously

$$\Phi_n(X) \equiv \prod_{i=1}^{i} (1 - X^{p_i}) / (1 - X) \pmod{X^{p+1}}.$$

$$\equiv (1 + X + \dots + X^p) (1 - X^{p_1} - \dots - X^{p_l}) \pmod{X^{p+1}}.$$

This yields $c_p^{(n)} = -t+1$, $c_{p-2}^{(n)} = -t+2$, which shows $C \supset \{s \in \mathbb{Z}; s \leq -1\}$ as t takes any odd integral value ≥ 3 .

For an odd positive integer m we have

$$\Phi_{2m}(X) = \Phi_m(-X).$$

As $n = p_1 p_2 \cdots p_t$ is odd for $p_1 \ge 3$, this remark yields for the above n with $p_1 \ge 3 \ c_p^{(2n)} = t - 1$, $c_{p-2}^{(2n)} = t - 2$ which implies $C \supset \{s \in \mathbb{Z}; s \ge 1\}$. Since $C \ni 0$, we have $C = \mathbb{Z}$.