76. A Note on p-adic Etale Cohomology

By Masato Kurihara
Department of Mathematics, Faculty of Science,
University of Tokyo
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 14, 1987)

1. Let X be a projective smooth scheme over a complete discrete valuation ring A of mixed characteristics ($0, p$). In [2], Fontaine and Messing studied the relation between the p-adic etale cohomology of the generic fiber $H_{e t}^{*}\left(X_{\bar{\eta}}\right)=H_{e t}^{*}\left(X_{\eta} \otimes_{\bar{\eta}}, Z_{p}\right)(\bar{\eta}$ is an algebraic closure of η) and the crystalline cohomology of the special fiber $H_{c r y s}^{*}\left(X_{s}\right)$. In this article, we consider not $\operatorname{Gal}(\bar{\eta} / \eta)$-representation $H_{e t}^{*}\left(X_{\bar{\eta}}\right)$, but $H_{e t}^{*}\left(X_{\eta}\right)$ itself and study this cohomology group by using the syntomic cohomology introduced in [2]. Detailed studies containing the complete proof will appear elsewhere.

We will use the following notation : X is a projective, smooth and geometrically connected scheme over A of dimension d as above, and $Y=X_{s}$ (resp. X_{η}) is the special fiber (resp. the generic fiber), and $i: Y \rightarrow X$ (resp. $j: X_{\eta} \rightarrow X$) is the canonical morphism. We assume that the residue field F of A has a finite p-base of order g (i.e. $\left[F: F^{p}\right]=p^{g}$).

Fontaine and Messing [2] defined the syntomic site $X_{s y n}$ and a sheaf S_{n}^{r} on $X_{s y n}$ in order to link the etale cohomology to De Rham cohomology. This sheaf S_{n}^{r} is regarded as an "ideal" etale sheaf $Z / p^{n}(r)$ on X. Namely, the group $H^{q}\left(X_{s y n}, S_{n}^{r}\right)$ is expected to play a role of " $H^{q}\left(X_{e t}, Z / p^{n}(r)\right.$)" which cannot be defined directly. In [2], a global cohomology $H^{q}\left(X_{\eta}, Z_{p}\right)$ was studied under the assumption $e_{A}=\operatorname{ord}_{A}(p)=1$. Our aim in this paper is a local study of p-adic etale vanishing cycles $i^{*} R j_{*} Z / p^{n}(r)$ when e_{A} may not be 1. Put $\mathcal{S}_{n}(r)=i^{*} R \pi_{*} S_{n}^{r} \in D\left(Y_{e t}\right)$ as in [3] where $\pi: X_{s y n} \rightarrow X_{e t}$ is the canonical morphism. Fontaine and Messing defined a morphism $S_{n}^{r} \rightarrow i^{*} j_{*}^{\prime} Z / p^{n}(r)$ (where $j^{\prime}: X_{n e t} \rightarrow X_{s y_{n-e t}}, i^{\prime}: X_{s y_{n}} \rightarrow X_{s y_{n-e t}}$) in [2] 5, which induces $\mathcal{S}_{n}(r)$ $\rightarrow i^{*} R j_{*} \boldsymbol{Z} / p^{n}(r)$. We study the difference between $\mathcal{S}_{n}(r)$ and $i^{*} R j_{*} \boldsymbol{Z} / p^{n}(r)$.

Theorem. If $r<p-1$, there exists a distinguished triangle $\mathcal{S}_{n}(r) \longrightarrow \tau_{\leq r} i^{*} R j_{*} Z / p^{n}(r) \longrightarrow W_{n} \Omega_{Y}^{r-1}[-r]$.
where $W_{n} \Omega_{Y \log }^{r-1}$ is the logarithmic Hodge-Witt sheaf. In particular, if $r \geq d(=\operatorname{dim} X)+g\left(=\operatorname{ord}_{p}\left[F: F^{p}\right]\right)$, we have a long exact sequence

$$
\begin{aligned}
& \longrightarrow H^{q}\left(X_{s y n}, S_{n}^{r}\right) \longrightarrow H^{q}\left(X_{\eta e t}, \boldsymbol{Z} / p^{n}(r)\right) \longrightarrow H^{q-r}\left(Y_{e t}, W_{n} \Omega_{Y}^{r-1}\right) \longrightarrow \\
& H^{q+1}\left(X_{s y n}, S_{n}^{r}\right) \longrightarrow H^{q+1}\left(X_{\eta e t}, \boldsymbol{Z} / p^{n}(r)\right) \longrightarrow H^{q-r+1}\left(Y_{e t}, W_{n} \Omega_{Y l o g}^{r-1}\right) \longrightarrow .
\end{aligned}
$$

In the case $e_{A}=\operatorname{ord}_{A}(p)=1$ and $r \geq d+g$, considering

$$
\mathcal{S}_{n}(r) \simeq D R\left(X \otimes \boldsymbol{Z} / p^{n}\right)[-1]
$$

($D R(T)$ means the De Rham complex $\Omega_{T / Z}$), we have
Corollary 1. Suppose that $e_{A}=\operatorname{ord}_{A}(p)=1$ and $d+g \leq r<p-1$. Then,

