76. A Note on p-adic Etale Cohomology

By Masato KURIHARA Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1987)

1. Let X be a projective smooth scheme over a complete discrete valuation ring A of mixed characteristics (0, p). In [2], Fontaine and Messing studied the relation between the *p*-adic etale cohomology of the generic fiber $H^*_{et}(X_{\bar{\eta}}) = H^*_{et}(X_{\eta} \otimes \bar{\eta}, Z_p)$ ($\bar{\eta}$ is an algebraic closure of η) and the crystalline cohomology of the special fiber $H^*_{et}(X_{\bar{\eta}})$. In this article, we consider not $Gal(\bar{\eta}/\eta)$ -representation $H^*_{et}(X_{\bar{\eta}})$, but $H^*_{et}(X_{\eta})$ itself and study this cohomology group by using the syntomic cohomology introduced in [2]. Detailed studies containing the complete proof will appear elsewhere.

We will use the following notation: X is a projective, smooth and geometrically connected scheme over A of dimension d as above, and $Y=X_s$ (resp. X_η) is the special fiber (resp. the generic fiber), and $i: Y \to X$ (resp. $j: X_\eta \to X$) is the canonical morphism. We assume that the residue field F of A has a finite p-base of order g (i.e. $[F: F^p]=p^q$).

Fontaine and Messing [2] defined the syntomic site X_{syn} and a sheaf S_n^r on X_{syn} in order to link the etale cohomology to De Rham cohomology. This sheaf S_n^r is regarded as an "ideal" etale sheaf $Z/p^n(r)$ on X. Namely, the group $H^q(X_{syn}, S_n^r)$ is expected to play a role of " $H^q(X_{et}, Z/p^n(r))$ " which cannot be defined directly. In [2], a global cohomology $H^q(X_{\bar{\eta}}, Z_p)$ was studied under the assumption $e_A = \operatorname{ord}_A(p) = 1$. Our aim in this paper is a local study of p-adic etale vanishing cycles $i^*Rj_*Z/p^n(r)$ when e_A may not be 1. Put $S_n(r) = i^*R\pi_*S_n^r \in D(Y_{et})$ as in [3] where $\pi : X_{syn} \to X_{et}$ is the canonical morphism. Fontaine and Messing defined a morphism $S_n^r \to i'*j'_*Z/p^n(r)$ (where $j': X_{qet} \to X_{syn-et}$, $i': X_{syn} \to X_{syn-et}$) in [2] 5, which induces $S_n(r) \to i^*Rj_*Z/p^n(r)$. We study the difference between $S_n(r)$ and $i^*Rj_*Z/p^n(r)$.

Theorem. If r < p-1, there exists a distinguished triangle $\mathcal{S}_n(r) \longrightarrow \tau_{\leq r} i^* R j_* \mathbb{Z} / p^n(r) \longrightarrow W_n \mathcal{Q}_{Flo}^{r-1}[-r].$

where $W_n \Omega_{Y \log}^{r-1}$ is the logarithmic Hodge-Witt sheaf. In particular, if $r \ge d(= \dim X) + g(= \operatorname{ord}_n [F : F^p])$, we have a long exact sequence

$$\longrightarrow H^{q}(X_{syn}, S_n^r) \longrightarrow H^{q}(X_{\eta et}, \mathbb{Z}/p^n(r)) \longrightarrow H^{q-r}(Y_{et}, W_n \mathcal{Q}_{Y \log q}^{r-1}) \longrightarrow H^{q+1}(X_{syn}, S_n^r) \longrightarrow H^{q+1}(X_{\eta et}, \mathbb{Z}/p^n(r)) \longrightarrow H^{q-r+1}(Y_{et}, W_n \mathcal{Q}_{Y \log q}^{r-1}) \longrightarrow .$$

In the case $e_A = ord_A(p) = 1$ and $r \ge d+g$, considering $\mathcal{S}_n(r) \simeq DR(X \otimes \mathbb{Z}/p^n)[-1]$

(DR(T) means the De Rham complex $\Omega^{\cdot}_{T/Z}$), we have Corollary 1. Suppose that $e_A = ord_A(p) = 1$ and $d+g \le r < p-1$. Then,