75. Euler Factors Attached to Unramified Principal Series Representations

By Takao WATANABE Mathematical Institute, Tohoku University (Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1987)

1. Introduction. Let G be a connected reductive unramified algebraic group defined over a non-archimedean local field F of characteristic zero. We use the same notation as in [3]. We fix a non-degenerate character φ of U(F). For a regular unramified character $\chi \in X_{\text{reg}}(T)$ of T(F), let $\rho(D_{\chi})$ be the unique constituent of the unramified principal series representation $I(\chi)$ which has a Whittaker model with respect to φ (see [3] Theorem 2). The purpose of this note is to give a construction of an Euler factor attached to $\rho(D_{\chi})$. A detailed account will be given elsewhere.

Since the minimal splitting field E of G is unramified over F, the Galois group Γ of E over F is cyclic. Let σ be a generator of Γ . Let $({}^{L}G^{0}, {}^{L}B^{0}, {}^{L}T^{0})$ be a triple defined over the complex number field C which is dual to the triple (G, B, T). Let ${}^{L}G = {}^{L}G^{0} \rtimes \Gamma$ be the finite Galois form of the L-group of G ([1]) and $X^{*}({}^{L}T^{0})$ the character group of ${}^{L}T^{0}$. For $\gamma \in \Gamma$, $g \in {}^{L}G^{0}$ and $\lambda \in X^{*}({}^{L}T^{0})$, the transform of g (resp. λ) by γ is denoted by ${}^{\tau}g$ (resp. ${}^{\tau}\lambda$). Let $\Re({}^{L}G^{0})$ (resp. $\Re({}^{L}G)$) be the set of equivalence classes of finite dimensional irreducible representations of ${}^{L}G^{0}$ (resp. ${}^{L}G$).

2. The parametrization of $\Re({}^{L}G)$. Let Λ be the set of dominant weights in $X^{*}({}^{L}T^{0})$. Note that Λ is Γ -invariant. Let Λ/Γ be the set of Γ -orbits in Λ and $[\lambda]$ the Γ -orbit of $\lambda \in \Lambda$. For $[\lambda] \in \Lambda/\Gamma$, $e([\lambda])$ denotes the cardinality of $[\lambda]$. By the classical theory of Cartan and Weyl, there exists a bijection $R^{\sim}: \Lambda \to \Re({}^{L}G^{0})$ such that, for $\lambda \in \Lambda$, each representative of $R^{\sim}(\lambda)$ has the highest weight λ . For $\lambda \in \Lambda$, $\gamma \in \Gamma$ and a representative $R(\lambda)$ of $R^{\sim}(\lambda)$, we define the representation ${}^{r}R(\lambda)$ of ${}^{L}G^{0}$ by ${}^{r}R(\lambda)(g) = R(\lambda)({}^{r}g), g \in {}^{L}G^{0}$. Then ${}^{r}R(\lambda)$ has the highest weight ${}^{r}\lambda$. Thus we can take representatives $R(\lambda)$ of equivalence classes $R^{\sim}(\lambda)$ satisfying the following relation :

 $R({}^{\sigma^{k}}\lambda) = {}^{\sigma^{k}}R(\lambda)$ for any $\lambda \in \Lambda$, $k=0, 1, \dots, e([\lambda])-1$. For $\lambda \in \Lambda$, the representation space of $R({}^{r}\lambda)$, $\gamma \in \Gamma$ is denoted by $V_{[\lambda]}$. Hereafter, we fix a set of such representatives $\{(R(\lambda), V_{[\lambda]}) | \lambda \in \Lambda\}$.

We fix an orbit $[\lambda] \in \Lambda/\Gamma$ and put $e = e([\lambda])$. Let $\operatorname{Hom}_{L_{0}}(R(\lambda), {}^{e}R(\lambda))$ be the space of intertwining operators of $R(\lambda)$ into ${}^{e}R(\lambda)$. This space is considered as a one dimensional subspace of End $(V_{[\lambda]})$. Let $V_{[\lambda]}^{\lambda}$ be the common highest weight space of $R(\lambda)$ and ${}^{e}R(\lambda)$. Then there exists a unique element $Q_{[\lambda]} \in \operatorname{Hom}_{L_{0}}(R(\lambda), {}^{e}R(\lambda))$ such that the restriction of $Q_{[\lambda]}$ to $V_{[\lambda]}^{\lambda}$ gives the identity map of $V_{[\lambda]}^{\lambda}$. Put $A_{[\lambda]} = \{\zeta_{[\Gamma|/e}^{k} \cdot Q_{[\lambda]} | k = 1, 2, \cdots, |\Gamma|/e\}$, where $\zeta_{|\Gamma|/e} =$ $\exp(2\pi\sqrt{-1}e/|\Gamma|)$. Since one has $\operatorname{Hom}_{L_{0}}(R({}^{r}\lambda), {}^{e}R({}^{r}\lambda)) = \operatorname{Hom}_{L_{0}}(R(\lambda), {}^{e}R(\lambda))$