9. The Euler Number and Other Arithmetical Invariants for Finite Galois Extensions of Algebraic Number Fields

By Shin-ichi Katayama
Department of Mathematics, Kyoto University
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1987)

1. Introduction. Let k be an algebraic number field of finite degree over the rational field \boldsymbol{Q}. Recently, T. Ono introduced new arithmetical invariants $E(K / k)$ and $E^{\prime}(K / k)$ for a finite extension K / k. In [5], he obtained a formula between the Euler number $E(K, k)$ and other cohomological invariants for a finite Galois extension K / k. In [2], we obtained a similar formula for $E^{\prime}(K / k)$. Both proofs use Ono's results on the Tamagawa number of algebraic tori, on which the formulae themselves do not depend. The purpose of this paper is to give a direct proof of these formulae, in response to a problem posed by T. Ono [6]. At the same time, we shall get some relations between $E(K / k), E^{\prime}(K / k)$ and other arithmetical invariants of K / k (for example, central class number, genus number etc.).
2. Let T be an algebraic torus defined over k, and K - be a Galois splitting field of T. We denote the Galois group $\operatorname{Gal}(K / k)$ by G and the character module $\operatorname{Hom}\left(T, G_{m}\right)$ by \hat{T}. \hat{T}_{0} denotes the integral dual of \hat{T}. Let $T\left(k_{A}\right), T(k)$ and $T\left(k_{p}\right)$ be the k-adelization of T, k-rational points of T and k_{p}-rational points of T, where p is a place of k. When p is finite, we denote the unique maximal compact subgroup of $T\left(k_{p}\right)$ by $T\left(O_{p}\right) . \quad T\left(U_{k}\right)$ denotes the group

$$
\prod_{p: \text { finite }} T\left(O_{p}\right) \times \prod_{p: \text { inninite }} T\left(k_{p}\right),
$$

where \mathfrak{p} runs over all the places of k. We define the class group of T by putting

$$
C(T)=T\left(k_{A}\right) / T(k) \cdot T\left(U_{k}\right) .
$$

As G-modules, we have

$$
\begin{aligned}
& T\left(k_{A}\right) \cong\left(\hat{T}_{0} \otimes K_{A}^{\times}\right)^{G}, \\
& T(k) \cong\left(\hat{T}_{0} \otimes K^{\times}\right)^{G}, \\
& T\left(U_{k}\right) \cong\left(\hat{T}_{0} \otimes U_{K}\right)^{G} .
\end{aligned}
$$

Here

$$
U_{K}=\prod_{\Re: \text { Anite }} O_{\Re}^{\times} \times \prod_{\Re: \text { inninte }} K_{\Re}^{\times},
$$

where \mathfrak{P} runs over all the places of K. We note here that $h(T)$, the class number of the torus T, is the order of the group $C(T)$. First, we shall sketch a new direct proof of the equation between $E(K / k)$ and the cohomological invariants of K / k. Consider the following exact sequence of algebraic tori defined over k

$$
\begin{equation*}
0 \longrightarrow R_{K / k}^{(1)}\left(G_{m}\right) \longrightarrow R_{K / k}\left(G_{m}\right) \xrightarrow{N} G_{m} \longrightarrow 0 . \tag{1}
\end{equation*}
$$

