73. Euler Number of Moduli Spaces of Instantons

By Mikio FURUTA

Department of Mathematics, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 14, 1987)

1. Introduction. Let S^4 be the 4-dimensional sphere with the standard Riemannian metric, P_k a principal SU(2)-bundle over S^4 with $c_2(P_k) = k \ (k > 0)$, and $P'_k = P_k / \{\pm 1\}$ the principal $SO(3) \ (=SU(2)/\{\pm 1\})$ -bundle over S^4 with $p_1(P_k) = -4k$. We denote by M_k the moduli space of antiinstantons on P_k (or P'_k). It is known that M_k has a natural structure of 8k-3 dimensional smooth manifold [3]. There are explicit descriptions of M_k [1] [2] [6], but not so much is known about the topology of M_k . S. K. Donaldson [6] and C. H. Taubes proved that M_k is connected. J. Hurtubise [10] proved that $\pi_1(M_k) = 0$ if k is odd, and $\pi_1(M_k) = Z/2$ if k is even.

It seems that some aspects of the topology of M_k is related to some profound properties of 4-dimensional smooth manifolds. In a sense, Donaldson's works in [5] and [7] about intersection forms of 4-manifolds are based on the fact that M_1 is diffeomorphic to open 5-disk.

The purpose of the present note is to announce our results about the Euler number of M_k .

2. Statement of the main results. Our first result is :

Theorem 1. The Euler number $\chi(M_k)$ is equal to the number d(k) of divisors of k.

The orientation preserving isometry group SO(5) of S^* acts on M_k naturally [3]. Let $T = SO(2) \times SO(2)$ be the maximal torus of SO(4) ($\subset SO(5)$), and $M_k^T = \{[A] \in M_k; g[A] = [A] \text{ for any } g \in T\}$ the fixed point set. We reduce Theorem 1 to the following Theorem 2.

Theorem 2. The number of the connected component of $M_k^{\mathbb{T}}$ is equal to d(k), and each component is diffeomorphic to \mathbf{R} . Precisely, the number of lifts of T-action on P'_k is equal to d(k), and our result is that for each lifted action, the moduli space of T-invariant anti-instanton on P'_k is diffeomorphic to \mathbf{R} .

We can apply Theorem 2 to get some topological results [8].

3. Outline of the proof. Donaldson [6] showed that the moduli space of (framed) anti-instantons is identified with the moduli space of (framed) holomorphic vector bundle over $CP^2 = C^2 \cup \ell^{\infty}$ with rank=2 and trivial on the line ℓ^{∞} . To prove Theorem 2, we investigate *T*-equivariant holomorphic bundles over CP^2 . Here we regard *T* as the maximal torus of SL(2, C). It could be possible to use the explicit description of M_k . To derive Theorem 1 from Theorem 2, we first show the following.

Lemma 3. Let S^1 be a generic 1-dimensional connected subgroup of