68. On Meromorphic and Univalent Functions

By Hitoshi Abe
Department of Applied Mathematics, Faculty of Engineering, Ehime University
(Communicated by Kôsaku Yosida, m. J. A., Sept. 14, 1987)

1. Introduction. In the previous paper [1] We derived the areaprinciple on meromorphic and univalent functions in an annulus and then showed some properties of such functions. In the present paper we shall give the above-mentioned area-principle in the precise form where the omitted area (hereafter defined in Theorem 1) is considered and then improve some results in [1]. Moreover we shall deal with the case of meromorphic and univalent functions in the unit circle $|z|<1$, by means of the results in the case of an annulus.
2. We consider the following annulus

$$
D: r<|z|<1 \quad(r>0)
$$

Let $w=\varphi_{\theta}(z, \zeta)$ be regular in D, except for a simple pole of residue 1 at $\zeta \in D$ and univalently map D onto the whole w-plane with two parallel rectilinear slits of the inclination θ. Then $\varphi_{\theta}(z, \zeta)$ is given as follows ([6], p. 375)

$$
\varphi_{\theta}(z, \zeta)=N(z, \zeta)+e^{i 2 \theta} M(z, \zeta)
$$

where

$$
\begin{aligned}
& N(z, \zeta)=\frac{1}{z-\zeta}+\frac{1}{\zeta} \sum_{n=1}^{\infty} \frac{r^{2 n}\left((z / \zeta)^{-n}-(z / \zeta)^{n}\right)}{1-r^{2 n}}=\frac{1}{2}\left(\varphi_{0}+\varphi_{\pi / 2}\right) . \\
& M(z, \zeta)=\frac{1}{\bar{\zeta}} \sum_{\substack{n=-\infty \\
(n \neq 0)}}^{\infty} \frac{(z \bar{\zeta})^{n}}{1-r^{2 n}}=\frac{1}{2}\left(\varphi_{0}-\varphi_{\pi / 2}\right) .
\end{aligned}
$$

We shall give the improved area-principle in the case of an annulus.
Theorem 1. Let $f(z)$ be regular, except for a simple pole of residue 1 at $\zeta \in D$ and univalent in the annulus D. Let δ denote the area of the complementary set of the image domain under $w=f(z)$. (We call δ the omitted area (cf. [4], [7]).) Moreover let $f(z)-N(z, \zeta)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$ in the annulus D. Then we have the following equality.

$$
\sum_{n=-\infty}^{\infty} n\left(1-r^{2 n}\right)\left|a_{n}\right|^{2}=\pi K(\zeta, \zeta)-\frac{\delta}{\pi},
$$

where

$$
K(z, \zeta)=\frac{1}{\pi} \sum_{n=-\infty}^{\infty} \frac{n(z \bar{\zeta})^{n-1}}{1-r^{2 n}}
$$

denotes the Bergman's kernel function of D.
Proof. We may consider the results in [1] or [5].
Corollary 1. Let $w=f(z)$ satisfy the same conditions in Theorem 1 and δ denote the omitted area of $w=f(z)$. Then we have the following inequality.

