67. Mixed Problems for Quasi-Linear Symmetric Hyperbolic Systems

By Shuichi KAWASHIMA^{*}), Taku YANAGISAWA,^{**}) and Yasushi SHIZUTA^{**})

(Communicated by Kôsaku Yosida, M. J. A., Sept. 14, 1987)

1. Introduction. Our primary interest in this note is the mixed problem for the first order quasi-linear hyperbolic systems with characteristic boundary. The case where the boundary matrix is nonsingular has been investigated by several authors, but we do not enter into detail here. (See [5] and the references therein.) The characteristic boundary value problem was treated by Tsuji [6], Majda-Osher [1], Ohkubo [2] and Rauch [4]. Recently, Ohkubo [3] gave an improved version of his sufficient condition for the full regularity of solutions to the linear mixed problem and established a local existence theorem for the quasi-linear mixed problem. Our purpose in this paper is to present another method for solving the quasi-linear mixed problem. To do this, we formulate a new sufficient condition which seems to be somewhat weaker than Ohkubo's one.

2. Assumptions and main result. Let Ω be a bounded domain in \mathbb{R}^n with smooth, compact boundary $\partial \Omega$. We study the following mixed problem.

$$(1)_{1} \qquad A^{0}(t, x, u)u_{t} + \sum_{i=1}^{n} A^{j}(t, x, u)u_{x_{j}} = f(t, x, u) \qquad \text{in } [0, T] \times \Omega,$$

 $(1)_2$ M(x)u=0 on $[0,T]\times\partial\Omega$,

$$(1)_3$$
 $u(0, x) = u_0(x)$ for $x \in \Omega$.

Here the unknown u=u(t, x) is a vector-valued function with m components and takes values in a convex open set $\mathcal{O} \subset \mathbb{R}^m$, A^0 and A^j , $j=1, \dots, n$, are smoothly varying real $m \times m$ matrices defined on $[0,T] \times \overline{\Omega} \times \mathcal{O}$, and f is a smooth function on $[0,T] \times \overline{\Omega} \times \mathcal{O}$ with values in \mathbb{R}^m . M is a real $r \times m$ matrix (r < m) depending smoothly on $x \in \partial \Omega$. It is assumed that M is of full rank for $x \in \partial \Omega$.

Condition 1. $A^{0}(t, x, u)$ is real symmetric and positive definite for $(t, x, u) \in [0, T] \times \overline{\Omega} \times \mathcal{O}$. $A^{j}(t, x, u), j = 1, \dots, n$, are real symmetric for $(t, x, u) \in [0, T] \times \overline{\Omega} \times \mathcal{O}$.

We write $\partial_j = \partial/\partial x_j$, $j=1, \dots, n$, and put $\partial_x = (\partial_1, \dots, \partial_n)$. For a first order differential operator $A(t, x, u; \partial_x) = \sum_{j=1}^n A^j(t, x, u)\partial_j$, we denote its symbol by $A(t, x, u; \xi) = \sum_{j=1}^n A^j(t, x, u)\xi_j$, where $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$. Let $\nu(x)$ be the unit outward normal to $\partial\Omega$ at x. The null space of M(x) is the boundary subspace and is denoted by $\mathcal{N}(M(x))$.

^{*)} Department of Applied Science, Faculty of Engineering 36, Kyushu University, Fukuoka 812.

^{**)} Department of Mathematics, Nara Women's University, Nara 630.