67. Mixed Problems for Quasi-Linear Symmetric Hyperbolic Systems

By Shuichi Kawashima*), Taku Yanagisawa,**) and Yasushi Shizuta**)
(Communicated by Kôsaku Yosida, M. J. A., Sept. 14, 1987)

1. Introduction. Our primary interest in this note is the mixed problem for the first order quasi-linear hyperbolic systems with characteristic boundary. The case where the boundary matrix is nonsingular has been investigated by several authors, but we do not enter into detail here. (See [5] and the references therein.) The characteristic boundary value problem was treated by Tsuji [6], Majda-Osher [1], Ohkubo [2] and Rauch [4]. Recently, Ohkubo [3] gave an improved version of his sufficient condition for the full regularity of solutions to the linear mixed problem and established a local existence theorem for the quasi-linear mixed problem. Our purpose in this paper is to present another method for solving the quasi-linear mixed problem. To do this, we formulate a new sufficient condition which seems to be somewhat weaker than Ohkubo's one.
2. Assumptions and main result. Let Ω be a bounded domain in \boldsymbol{R}^{n} with smooth, compact boundary $\partial \Omega$. We study the following mixed problem.

$$
\begin{equation*}
A^{0}(t, x, u) u_{t}+\sum_{j=1}^{n} A^{j}(t, x, u) u_{x_{j}}=f(t, x, u) \quad \text { in }[0, T] \times \Omega \tag{1}
\end{equation*}
$$

$(1)_{2} \quad M(x) u=0 \quad$ on $[0, T] \times \partial \Omega$,
(1) $)_{3} \quad u(0, x)=u_{0}(x) \quad$ for $x \in \Omega$.

Here the unknown $u=u(t, x)$ is a vector-valued function with m components and takes values in a convex open set $\mathcal{O} \subset \boldsymbol{R}^{m}, A^{0}$ and $A^{j}, j=1, \cdots, n$, are smoothly varying real $m \times m$ matrices defined on $[0, T] \times \bar{\Omega} \times \mathcal{O}$, and f is a smooth function on $[0, T] \times \bar{\Omega} \times \mathcal{O}$ with values in $\boldsymbol{R}^{m} . M$ is a real $r \times m$ matrix ($r<m$) depending smoothly on $x \in \partial \Omega$. It is assumed that M is of full rank for $x \in \partial \Omega$.

Condition 1. $A^{0}(t, x, u)$ is real symmetric and positive definite for $(t, x, u) \in[0, T] \times \bar{\Omega} \times \mathcal{O} . \quad A^{j}(t, x, u), j=1, \cdots, n$, are real symmetric for $(t, x, u) \in[0, T] \times \bar{\Omega} \times \mathcal{O}$.

We write $\partial_{j}=\partial / \partial x_{j}, j=1, \cdots, n$, and put $\partial_{x}=\left(\partial_{1}, \cdots, \partial_{n}\right)$. For a first order differential operator $A\left(t, x, u ; \partial_{x}\right)=\sum_{j=1}^{n} A^{j}(t, x, u) \partial_{j}$, we denote its symbol by $A(t, x, u ; \xi)=\sum_{j=1}^{n} A^{j}(t, x, u) \xi_{j}$, where $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in \boldsymbol{R}^{n}$. Let $\nu(x)$ be the unit outward normal to $\partial \Omega$ at x. The null space of $M(x)$ is the boundary subspace and is denoted by $\mathfrak{N}(M(x))$.

[^0]
[^0]: *) Department of Applied Science, Faculty of Engineering 36, Kyushu University, Fukuoka 812.
 **) Department of Mathematics, Nara Women's University, Nara 630.

