64. A Generalization of Lefschetz Theorem

By Takao Fujita
Department of Mathematics, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., June 9, 1987)

We improve the classical Lefschetz theorem as follows :
Theorem. Let A be an effective ample divisor on an algebraic variety V defined over C of dimension n, let v be a point on $V-A$ such that $V-A$ $-v$ is smooth and set $U=V-v$. Then the relative homotopy group $\pi_{k}(U, A)$ vanishes for every $k<n$.

Using Morse theory, we prove this theorem by modifying AndreottiFrankel method (cf. [1], [2]). First, replacing A by $m A$ for $m \gg 1$ if necessary, we may assume that A is very ample. Thus $V \subset P^{N}$ and $A=$ $V \cap S$ for some hyperplane S in \boldsymbol{P}^{N}. We fix an affine linear coordinate of $\boldsymbol{P}^{N}-S \simeq \boldsymbol{C}^{N}$ and let δ denote the Euclid distance with respect to this coordinate. Set $N_{R}=\{x \in V-A \mid \delta(x, v) \leqq R\}$ and $U_{R}=V-N_{R}$ for each $R>0$. If $r>0$ is small enough, the function $d(x)=\delta(x, v)$ has no critical point in $N_{4 r}$. Hence $U_{3 r}$ and U_{r} are deformation retracts of U.

For a point p in $\boldsymbol{P}^{N}-S-V$, let f be the function $\delta(x, p)^{2}$ on $U-A$. By [2; Theorem 6.6], f has no degenerate critical points for almost all p. In particular, we can choose p such that $\delta(p, v)<r$. Set $T_{a}=A \cup\{x \in V-A \mid$ $\left.f(x) \geqq a^{2}\right\}$. Then $T_{L} \subset U_{3 r} \subset T_{2 r} \subset U_{r}$ for any $L \gg 1$. Using Morse theory similarly as in [2;p.42], we infer that $T_{2 r}$ has the homotopy type of T_{L} with finitely many cells of real dimension $\geqq n+1$ attached, so we obtain $\pi_{k}\left(T_{2 r}, A\right) \simeq \pi_{k}\left(T_{L}, A\right) \simeq\{1\}$ for $k<n$. On the other hand, the composition $\pi_{k}\left(U_{3 r}, A\right) \rightarrow \pi_{k}\left(T_{2 r}, A\right) \rightarrow \pi_{k}\left(U_{r}, A\right) \simeq \pi_{k}(U, A)$ is bijective. Hence $\pi_{k}(U, A)$ is trivial. Thus we complete the proof.

Corollary. Let L be the total space of an ample line bundle on a compact complex manifold M and let X be a compact analytic subspace of L of pure dimension $n=\operatorname{dim} M$. Then, for the natural map $f: X \rightarrow M$,

1) $\pi_{k}(f): \pi_{k}(X) \rightarrow \pi_{k}(M)$ is bijective if $k<n$ and is surjective if $k=n$.
2) $H_{k}(f): H_{k}(X ; Z) \rightarrow H_{k}(M ; Z)$ is bijective if $k<\pi$ and is surjective if $k=n$.
3) $H^{k}(f): H^{k}(M ; Z) \rightarrow H^{k}(X ; Z)$ is bijective if $k<n$ and is injective with torsion free cokernel if $k=n$.
4) $\operatorname{Pic}(M) \rightarrow \operatorname{Pic}(X)$ is bijective if $n>2$ and is injective if $n=2$. When $n=2$, the cokernel is torsion free if $H^{1}\left(M, \mathcal{O}_{M}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right)$ is injective.

Proof. Set $\mathcal{L}=\mathcal{O}_{M}[L], \mathcal{S}=\mathcal{O}_{M} \oplus \mathcal{L}, P=\boldsymbol{P}(\mathcal{S})$ and $H=\mathcal{O}_{P}(1)$. Then P is a P^{1}-bundle over M and there are disjoint sections M_{∞} and M_{0} corresponding to quotient bundles \mathcal{O}_{M} and \mathcal{L} of \mathcal{S}, respectively. The open set $P-M_{\infty}$ is naturally isomorphic to L and M_{0} is identified with the 0 -section. So we

