61. On Two Conjectures on Real Quadratic Fields

By Hyun Kwang Kim, Ming-Guang Leu, and Takashi Ono Department of Mathematics, The Johns Hopkins University (Communicated by Shokichi Iyanaga, m. J. A., June 9, 1987)

Recently we learned from a paper of H . Yokoi [2] that there are two conjectures $\left(\mathrm{C}_{1}\right),\left(\mathrm{C}_{2}\right)$ concerning the class numbers of real quadratic fields.
$\left(\mathrm{C}_{1}\right)$: Let l be a square-free integer of the form $l=q^{2}+4(q \in N)$. Then there exist just 6 quadratic fields $\boldsymbol{Q}(\sqrt{ } \bar{l})$ of class number one.
$\left(\mathrm{C}_{2}\right)$: Let l be a square-free integer of the form $l=4 q^{2}+1(q \in N)$. Then there exist just 6 quadratic fields $\boldsymbol{Q}(\sqrt{l})$ of class number one.

In this paper, we shall prove that at least one of the two conjectures is true and that there are at most 7 quadratic fields $\boldsymbol{Q}(\sqrt{l})$ of class number one for the other case. Our result will follow from two theorems which are independent of each other. Theorem 1 follows from Tatuzawa's lower bound for $L(1, \chi)$ [1], and Theorem 2 is obtained by the results of Yokoi [2] and by the help of a computer (Macsyma) in our Department.

In the sequel, l will always denote a square-free integer of the form $l=q^{2}+4$ or $l=4 q^{2}+1(q \in N)$. We shall denote by $h(l)$ the class number of the quadratic field $\boldsymbol{Q}(\sqrt{l})$.

Theorem 1. There exists at most one $l \geqq e^{18}$ with $h(l)=1$.
Proof. By Dirichlet's class number formula, we have

$$
h(l)=\frac{\sqrt{l}}{2 \log u} L\left(1, \chi_{l}\right),
$$

where χ_{l} is the Kronecker character belonging to the quadratic field $\boldsymbol{Q}(\sqrt{l})$ and u is the fundamental unit of $\boldsymbol{Q}(\sqrt{l})$. By the choice of l, we have

$$
u= \begin{cases}(q+\sqrt{l}) / 2 & \text { if } l=q^{2}+4 \\ 2 q+\sqrt{l} & \text { if } l=4 q^{2}+1\end{cases}
$$

Assume that $l \geqq e^{16}$. By Theorem 2 of [1], we have

$$
L\left(1, \chi_{l}\right)>\frac{1}{16}(0.655) l^{-(1 / 16)}
$$

with one possible exception of $l .{ }^{1)}$
Case 1. $l=q^{2}+4$. Then $u=(q+\sqrt{l}) / 2<\sqrt{l}$ and

$$
h(l)=\frac{\sqrt{l}}{2 \log u} L\left(1, \chi_{l}\right)>\frac{\sqrt{l}}{2 \log \sqrt{l}} \frac{1}{16}(0.655) l^{-(1 / 16)}=\frac{1}{16}(0.655) \frac{l^{7 / 16}}{\log l} .
$$

Since $f(x)=x^{7 / 16} / \log x$ is increasing on $\left[e^{16}, \infty\right)$, we have

$$
h(l)>\frac{1}{16}(0.655) \frac{e^{7}}{16}=2.805 \cdots>2 .
$$

Case 2. $l=4 q^{2}+1$. Then $u=2 q+\sqrt{l}<2 \sqrt{l}$ and

[^0]
[^0]: 1) Put $k=l$ and $\varepsilon=1 / 16$ in Theorem 2 of [1].
