60. On the Value of the Dedekind Sum

By Kiyoshi Katase
Faculty of Sciences, Gakushuin University
(Communicated by Shokichi Ifanaga, m. J. A., June 9, 1987)

Let p and q be relatively prime positive integers. The $n^{\text {th }}$ Dedekind sum for p, q will be defined by

$$
S_{n}(p, q)=\sum_{k=1}^{q-1}\left[\frac{k p}{q}\right]^{n} \quad(n=1,2, \cdots)
$$

where [x] denotes, as usual, the greatest integer not exceeding x. It is easy to see that $S_{1}(p, q)=S_{1}(q, p)=\frac{1}{2}(p-1)(q-1)$ and the following reciprocity formulas are known:

$$
\begin{align*}
& \frac{1}{p} S_{2}(p, q)+\frac{1}{q} S_{2}(q, p)=\frac{1}{6 p q}(p-1)(2 p-1)(q-1)(2 q-1) \tag{1}\\
& \frac{1}{p(p-1)} S_{3}(p, q)+\frac{1}{q(q-1)} S_{3}(q, p)=\frac{1}{4 p q}(p-1)(q-1)(2 p q-p-q+1) \tag{.2}
\end{align*}
$$

(see, for example, Carlitz [3]).
Assume now $p>q$ throughout this paper. One of the methods to prove these reciprocity formulas is to put $[h q / p]=i-1(i=1,2, \cdots, q)$ and change $S_{n}(q, p)$ to the sum with respect to i taking the multiplicities of i 's into account. Here the multiplicity of i means the number of h which yields the same value of i and is determined as follows: If h ranges from $[(i-1) p / q]$ +1 to $[i p / q]$ for $i<q$, then the value of $[h q / p]$ is $i-1$; for $i=q$, however, h ranges only from $[(q-1) p / q]+1$ to $p-1$. (See, for example, Rademacher and Whiteman [6], (3.5).) Therefore, to obtain the reciprocity relation, we have only to apply the equation

$$
\left[\frac{(h+1) q}{p}\right]-\left[\frac{h q}{p}\right]=\left\{\begin{array}{lc}
1 & \text { if } h=[i p / q] \tag{3}\\
0 & (i=1, \cdots, q-1) \text { or } p-1, \\
\text { otherwise. }
\end{array}\right.
$$

We have now the following lemma.
Lemma. Put $r_{1}=p-[p / q] q$, then we get the equation

$$
\left[\frac{(k+1) p}{q}\right]-\left[\frac{k p}{q}\right]=\left\{\begin{array}{lc}
{[p / q]+1} & \text { if } k=\left[j q / r_{1}\right]\left(j=1, \cdots, r_{1}-1\right) \text { or } q-1, \tag{4}\\
{[p / q]} & \text { otherwise } .
\end{array}\right.
$$

Proof. Substituting $p=[p / q] q+r_{1}$, we get

$$
\left[\frac{(k+1) p}{q}\right]-\left[\frac{k p}{q}\right]=\left[\frac{(k+1) r_{1}}{q}\right]-\left[\frac{k r_{1}}{q}\right]+\left[\frac{p}{q}\right] .
$$

Since q and r_{1} are relatively prime and $r_{1}<q$, the equation (4) follows from the equation (3).

The equation (4) can be used for reducing the Dedekind sum to a sum of fewer terms and thus for giving an algorithm to evaluate the Dedekind sum in some cases.

