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1. Introduction. In what follows, we summarize some results on
the irreducible decomposition of unramified principal series representations
of quasi-split groups. A detailed account will be published elsewhere. In
the case of split groups, the corresponding results were obtained by Rodier
[3].

Let G be a connected reductive algebraic group defined over a non-
archimedean local field F. We assume G is unramified, that is, G is quasi-
split over F and split over an unramified extension of F. Let E be the
minimal splitting field of G. Let S be a maximal F-split torus in G defined
over F, T the centralizer of S in G, which is a maximal torus in G, and B
a Borel subgroup of G defined over F containing T. We denote by G(F),
B(F), ..., the locally compact and totally disconnected groups consisting
of F-rational points of G, B, Let X*(S)be the character group of S,
V=X*(S)(R)R the vector space over the real number field R and ) the relative
root system of G with respect to S. A "root ray" of G with respect to S
is an open half line with the starting point 0 in V containing at least one
root relative to S. Let Y be the set of root rays of G with respect to S.
For a e Y, let a(a) (resp. r(a)) be the non-divisible (resp. non-multipliable)
root contained in a. A root ray a is called plural if a(c)=/=r(a). We take
the coroot system v attached to the reduced root system (r(a)]a e Y}. The
coroot corresponding to a root r(a) is denoted by av. For a e ?K, we choose
an absolute root a of G with respect to T such that the restriction of a to
S equals a(a). Let F be the stabilizer of a in the Galois group F of E over
F and d(a) the index of F in F. Note that d(a) is independent of the choice
of a. Further, when a is a plural root ray, we put (a)=(d(a)/2)+
(log (qr))-r:-, where q is the cardinality of the residual field of F and
z=3.141.

2. The unramified principal series. Let To be the maximal compact
subgroup of T(F). An element of Xo(T)=Hom(T(F)/To, C*) is called an

unramified character of T(F). The relative Weyl group Wo(S) correspond-
ing to S acts on X0(T), namely, for w e Wo(S) and x e Xo(T), the action of
w on Z is defined by Z(t)=Z(w-tw), t e T(F), where _w is a representative
of w in the group o F-rational points of the normalizer of S in G. An
unramified character Z is called regular i Z=/=Z or any w e Wo(S), w=/=l.
Let Xog(T) be the set of regular unramified characters of T(F). Note that


