58. On a Problem of R. Brauer on Zeta-Functions of Algebraic Number Fields. II

By Ken-ichi Sato
Faculty of Engineering, Nihon University
(Communicated by Shokichi Iyanaga, m. J. A., June 9, 1987)

1. Let K_{1}, K_{2} be algebraic number fields of finite degrees. Put $K=K_{1} K_{2}, k=K_{1} \cap K_{2}$ and consider the following quotient of Dedekind zetafunctions:

$$
\zeta_{K_{1}, K_{2}}(s)=\zeta_{K}(s) \cdot \zeta_{k}(s) / \zeta_{K_{1}}(s) \cdot \zeta_{K_{2}}(s) .
$$

It was shown by R. Brauer [1] that $\zeta_{K_{1}, K_{2}}(s)$ is an entire function of s, if K_{1} / k and K_{2} / k are normal. In our previous note [2], we called R. Brauer's problem the question asking for other cases in which $\zeta_{K_{1}, K_{2}}(s)$ becomes entire. We proved that this takes place in the following cases:
(i) $K_{1}=Q(\sqrt[p]{a}), K_{2}=Q(\sqrt[p]{b})$, where p is an odd prime and a, b are relatively prime p-free integers $\neq 1$.
(ii) $K_{1}=Q(\sqrt[p]{a}), K_{2}=Q(\sqrt[q]{b})$ where p, q are distinct odd primes and a, b are relatively prime, respectively p-free and q-free integers $\neq 1$.

In the present note, we shall show that these results can be derived in a generalized form from a theorem on "supersolvable extensions" as stated below. The letters k, K, L, M (sometimes with suffixes) will denote throughout this note algebraic number fields of finite degrees.
2. If K / k is normal and $\operatorname{Gal}(K / k)$ is supersolvable, K / k itself will be called supersolvable. Then there exists a chain of intermediate fields $K=k_{\nu} \supset k_{\nu-1} \supset \cdots \supset k_{0}=k$ such that all k_{i} / k are normal and $k_{i} \supset k_{i-1}$ are cyclic, $i=\nu, \nu-1, \cdots, 1$. It is known that if K / k is supersolvable, the Artin L-function $L(s, \chi, K / k)$ for every non-principal character χ of Gal (K / k) is entire (cf. [3]).

Theorem. Let $K=K_{1} K_{2}, k=K_{1} \cap K_{2}$. Let $M / k, M_{1} / k$ be galois closures of $K / k, K_{1} / k$ respectively. If M / k is supersolvable and $M_{1} \cap K_{2}=k$, then $\zeta_{K_{1}, K_{2}}(s)$ is entire.

Proof. Put $G=\operatorname{Gal}(M / k), G_{1}=\operatorname{Gal}\left(M_{1} / k\right), H_{1}=\operatorname{Gal}\left(M_{1} / K_{1}\right)$. Then we have after $\operatorname{Artin} \zeta_{K_{1}}(s)=L\left(s, 1_{H_{1}}, M_{1} / K_{1}\right)=L\left(s, 1_{H_{1}}^{G_{1}}, M_{1} / k\right)$, where $1_{H_{1}}$ is the principal character of H_{1} and $1_{H_{1}}^{G_{1}}$ the same character induced to G_{1}. Likewise $\zeta_{k}(s)=L\left(s, 1_{G_{1}}, M_{1} / k\right)$. Now we can write $1_{H_{1}}^{G_{1}}=1_{G_{1}}+\sum_{i} \lambda_{i}$, where λ_{i} are nonprincipal irreducible characters of G_{1}, so that we obtain
(1) $\zeta_{K_{1}}(s) / \zeta_{k}(s)=\prod_{i} L\left(s, \lambda_{i}, M_{1} / k\right)=\prod_{i} L\left(s, \tilde{\lambda}_{i}, M / k\right)$. Here $\tilde{\lambda}_{i}$ is the character λ_{i} lifted to $\operatorname{Gal}(M / k)$. We give the following diagram for the sake of convenience.

