58. On a Problem of R. Brauer on Zeta-Functions of Algebraic Number Fields. II

By Ken-ichi SATO

Faculty of Engineering, Nihon University

(Communicated by Shokichi IYANAGA, M. J. A., June 9, 1987)

1. Let K_1 , K_2 be algebraic number fields of finite degrees. Put $K = K_1K_2$, $k = K_1 \cap K_2$ and consider the following quotient of Dedekind zeta-functions:

 $\zeta_{K_1,K_2}(s) = \zeta_K(s) \cdot \zeta_k(s) / \zeta_{K_1}(s) \cdot \zeta_{K_2}(s).$

It was shown by R. Brauer [1] that $\zeta_{K_1,K_2}(s)$ is an entire function of s, if K_1/k and K_2/k are normal. In our previous note [2], we called R. Brauer's problem the question asking for other cases in which $\zeta_{K_1,K_2}(s)$ becomes entire. We proved that this takes place in the following cases:

(i) $K_1 = Q(\sqrt[p]{a}), K_2 = Q(\sqrt[p]{b})$, where p is an odd prime and a, b are relatively prime p-free integers $\neq 1$.

(ii) $K_1 = Q(\sqrt[p]{a}), K_2 = Q(\sqrt[q]{b})$ where p, q are distinct odd primes and a, b are relatively prime, respectively p-free and q-free integers $\neq 1$.

In the present note, we shall show that these results can be derived in a generalized form from a theorem on "supersolvable extensions" as stated below. The letters k, K, L, M (sometimes with suffixes) will denote throughout this note algebraic number fields of finite degrees.

2. If K/k is normal and $\operatorname{Gal}(K/k)$ is supersolvable, K/k itself will be called *supersolvable*. Then there exists a chain of intermediate fields $K=k_{\nu}\supset k_{\nu-1}\supset\cdots\supset k_0=k$ such that all k_i/k are normal and $k_i\supset k_{i-1}$ are cyclic, $i=\nu, \nu-1, \cdots, 1$. It is known that if K/k is supersolvable, the Artin L-function $L(s, \chi, K/k)$ for every non-principal character χ of Gal (K/k) is entire (cf. [3]).

Theorem. Let $K = K_1K_2$, $k = K_1 \cap K_2$. Let M/k, M_1/k be galois closures of K/k, K_1/k respectively. If M/k is supersolvable and $M_1 \cap K_2 = k$, then $\zeta_{K_1,K_2}(s)$ is entire.

Proof. Put G = Gal(M/k), $G_1 = \text{Gal}(M_1/k)$, $H_1 = \text{Gal}(M_1/K_1)$. Then we have after Artin $\zeta_{K_1}(s) = L(s, 1_{H_1}, M_1/K_1) = L(s, 1_{H_1}^{G_1}, M_1/k)$, where 1_{H_1} is the principal character of H_1 and $1_{H_1}^{G_1}$ the same character induced to G_1 . Likewise $\zeta_k(s) = L(s, 1_{G_1}, M_1/k)$. Now we can write $1_{H_1}^{G_1} = 1_{G_1} + \sum_i \lambda_i$, where λ_i are nonprincipal irreducible characters of G_1 , so that we obtain

(1) $\zeta_{\kappa_1}(s)/\zeta_k(s) = \prod_i L(s, \lambda_i, M_1/k) = \prod_i L(s, \tilde{\lambda}_i, M/k)$. Here $\tilde{\lambda}_i$ is the character λ_i lifted to Gal (M/k). We give the following diagram for the sake of convenience.