57. A Note on Modules

By Venkateswara Reddy Yenumula and Satyanarayana Bhavanari
Department of Mathematics, Nagarjuna University, Nagarjunanagar-522 510, A. P. India
(Communicated by Shokichi Iyanaga, m. J. A., June 9, 1987)

Introduction. Let R be a fixed (not necessarily commutative) ring. Throughout this note, we are concerned with left R-modules M, A, H, \cdots. Like in'Goldie [1], we shall use the following terminology. A non-zero submodule K of M is called essential in M (or M is an essential extension of K) if $K \cap A=0$ for any other submodule A of M, implies $A=0 . \quad M$ has finite Goldie dimension (abbr. FGD) if M does not contain a direct sum of infinite number of non-zero submodules. Equivalently, M has finite Goldie dimension if for any strictly increasing sequence H_{0}, H_{1}, \cdots of submodules of M, there is an integer i such that for every $k \geqslant i, H_{k}$ is essential submodule in H_{k+1}. M is uniform, if every non-zero submodule of M is essential in M. Then it is proved (Goldie [1]) that in any module M with FGD, there exist non-zero uniform submodules $U_{1}, U_{2}, \cdots, U_{n}$ whose sum is direct and essential in M. The number n is independent of the uniform submodules. This number n is called the Goldie dimension of M and denoted by $\operatorname{dim} M$. It is easily proved that if M has FGD then every submodule of M has also FGD and $\operatorname{dim} K \leq \operatorname{dim} M$ (K being a submodule of M).

Furthermore, if K, A are submodules of M, and K is a maximal submodule of M such that $K \cap A=0$, then we say that K is a complement of A (or a complement in M). It is easily proved that if K is a complement in M, if and only if there exists a submodule A in M such that $A \cap K=0$ and $K^{\prime} \cap A \neq 0$ for any submodule K^{\prime} of M containing K. In this case we have $K+A$ is essential in M.

We are now introducing a notion " E-irreducible submodule of M ". A submodule H of M is said to be E-irreducible if $H=K \cap J, K$ and J are submodules of M, and H is essential in K, imply $H=K$ or $H=J$. Every complement submodule is an E-irreducible submodule, but the converse is not true.

Example 1. Consider Z, the ring of integers and Z_{12}, the ring of integers modulo 12 . Write $R=Z$ and $M=Z_{12}$. Now the principal submodule K of M generated by 2 , is E-irreducible submodule, but not a complement submodule.

Example 2. Consider $R=Z$ and $M=Z_{8} \times Z_{3}$. Now the submodule $K=(4) \times(0)$ of M is not E-irreducible (since $K=\left(Z_{8} \times(0)\right) \cap\left((4) \times Z_{3}\right)$ and K is essential in $Z_{8} \times(0)$).

The purpose of this note is to prove the following result.

