6. Variations of Pseudoconvex Domains in the Complex Manifold

By Hiroshi YAMAGUCHI Faculty of Educations, University of Shiga (Communicated by Kunihiko KodAIRA, M. J. A., Jan. 12, 1987)

Introduction. In the *n*-dimensional complex vector space C^n with standard norm $||z||^2 = |z_1|^2 + \cdots + |z_n|^2$ for $z = (z_1, \dots, z_n) \in C^n$, let *D* be a relatively compact domain of C^n with smooth boundary. Given $\zeta \in D$, *D* carries the Green's function G(z) with pole at ζ for the Laplace equation $\Delta G = (\partial^2/\partial z_1\partial \bar{z}_1 + \cdots + \partial^2/\partial z_n\partial \bar{z}_n)G = 0$. The function G(z) is expressed in the form

$$G(z) = \begin{cases} -\log |z - \zeta| + \lambda + H(z) & (n \equiv 1) \\ \|z - \zeta\|^{-2n+2} + \lambda + H(z) & (n \geq 2) \end{cases}$$

where λ is a constant, H(z) is harmonic in D and $H(\zeta)=0$. The constant term λ is called the Robin constant for $(D, \{\zeta\})$. When D varies in \mathbb{C}^n with parameter t, so does λ with t. This is realized as follows: Let B be a domain of the t-complex plane containing the origin O. We let correspond to each $t \in B$ a relatively compact domain D(t) of \mathbb{C}^n with smooth boundary such that $D(t) \ni \zeta$ for all $t \in B$ and D(O)=D, and denote by $\lambda(t)$ the Robin constant for $(D(t), \{\zeta\})$. Consequently, $\lambda(t)$ defines a real-valued function on B. In [6] we showed

Theorem 1. If the set $\tilde{D} = \{(t, z) \in B \times C^n | z \in D(t)\}$ is a pseudoconvex domain in $B \times C^n$, then $\lambda(t)$ is a superharmonic function on B.

In this note we extend Theorem 1 to the case when D(t) are domains in a complex manifold M.

1. Let *M* be a (compact or non-compact) connected complex manifold of dimension *n*. In this note we always assume that $n \ge 2$, for we studied in [5] the case of n=1. Let $ds^2 = \sum_{\alpha,\beta=1}^n g_{\alpha\beta} dz_{\alpha} \otimes d\bar{z}_{\beta}$ be a Hermitian metric on *M*. For notations we follow [3]. We put

$$\omega = i \sum_{lpha,eta=1}^n g_{lphaeta} dz_{lpha} \wedge dar{z}_{eta}, \qquad \omega^n = (i)^n \, n \, ! \, g(z) dz_1 \wedge dar{z}_1 \wedge \cdots \wedge dz_n \wedge dar{z}_n, \ arDelta = -(*\partial *ar{\partial} + *ar{\partial} *\partial) = -2 \Big\{ \sum_{lpha,eta=1}^n g^{lphaeta} rac{\partial^2}{\partial ar{z}_{lpha} \partial z_{eta}} + \operatorname{Re} \sum_{lpha,eta=1}^n rac{1}{g} \, rac{\partial(g g^{lphaeta})}{\partial ar{z}_{lpha}} rac{\partial}{\partial z_{eta}} \Big\},$$

where $i^2 = -1$, $g(z) = \det(g_{\alpha\beta}(z))$ and $(g^{\alpha\beta}(z)) = (g_{\alpha\beta}(z))^{-1}$. If a function u defined in a domain of M is of class C^2 and satisfies $\Delta u = 0$, then u is said to be harmonic. For $\zeta \in M$ and a neighborhood U of ζ , we denote by $E(\zeta, U, ds^2)$ the set of all elementary solutions $E(\zeta, z)$ for $\Delta E(\zeta, z) = 0$ on $U \times U$ except for the diagonal set (see K. Kodaira [2], p. 612).

In what follows, if M is compact, then we assume $D \neq M$. Moreover, we suppose $\zeta \in D$ and $E(\zeta, z) \in E(\zeta, U, ds^2)$.

First, consider the case where D is a relatively compact domain of M