6. Variations of Pseudoconvex Domains in the Complex Manifold

By Hiroshi Yamaguchi
Faculty of Educations, University of Shiga
(Communicated by Kunihiko Kodaira, m. J. A., Jan. 12, 1987)

Introduction. In the n-dimensional complex vector space C^{n} with standard norm $\|z\|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}$ for $z=\left(z_{1}, \cdots, z_{n}\right) \in C^{n}$, let D be a relatively compact domain of C^{n} with smooth boundary. Given $\zeta \in D, D$ carries the Green's function $G(z)$ with pole at ζ for the Laplace equation $\Delta G=$ $\left(\partial^{2} / \partial z_{1} \partial \bar{z}_{1}+\cdots+\partial^{2} / \partial z_{n} \partial \bar{z}_{n}\right) G=0$. The function $G(z)$ is expressed in the form

$$
G(z)= \begin{cases}-\log |z-\zeta|+\lambda+H(z) & (n=1) \\ \|z-\zeta\|^{-2 n+2}+\lambda+H(z) & (n \geqq 2)\end{cases}
$$

where λ is a constant, $H(z)$ is harmonic in D and $H(\zeta)=0$. The constant term λ is called the Robin constant for ($D,\{\zeta\}$). When D varies in C^{n} with parameter t, so does λ with t. This is realized as follows: Let B be a domain of the t-complex plane containing the origin O. We let correspond to each $t \in B$ a relatively compact domain $D(t)$ of C^{n} with smooth boundary such that $D(t) \ni \zeta$ for all $t \in B$ and $D(O)=D$, and denote by $\lambda(t)$ the Robin constant for $(D(t),\{\zeta\})$. Consequently, $\lambda(t)$ defines a real-valued function on B. In [6] we showed

Theorem 1. If the set $\tilde{D}=\left\{(t, z) \in B \times C^{n} \mid z \in D(t)\right\}$ is a pseudoconvex domain in $B \times C^{n}$, then $\lambda(t)$ is a superharmonic function on B.

In this note we extend Theorem 1 to the case when $D(t)$ are domains in a complex manifold M.

1. Let M be a (compact or non-compact) connected complex manifold of dimension n. In this note we always assume that $n \geqq 2$, for we studied in [5] the case of $n=1$. Let $d s^{2}=\sum_{\alpha, \beta=1}^{n} g_{\alpha \beta} d z_{\alpha} \otimes d \bar{z}_{\beta}$ be a Hermitian metric on M. For notations we follow [3]. We put

$$
\begin{aligned}
& \omega=i \sum_{\alpha, \beta=1}^{n} g_{\alpha \beta} d z_{\alpha} \wedge d \bar{z}_{\beta}, \quad \omega^{n}=(i)^{n} n!g(z) d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n}, \\
& \Delta=-(* \partial * \bar{\partial}+* \bar{\partial} * \partial)=-2\left\{\sum_{\alpha, \beta=1}^{n} g^{\alpha \beta} \frac{\partial^{2}}{\partial \bar{z}_{\alpha} \partial z_{\beta}}+\operatorname{Re} \sum_{\alpha, \beta=1}^{n} \frac{1}{g} \frac{\partial\left(g g^{\alpha \beta}\right)}{\partial \bar{z}_{\alpha}} \frac{\partial}{\partial z_{\beta}}\right\},
\end{aligned}
$$

where $i^{2}=-1, g(z)=\operatorname{det}\left(g_{\alpha \beta}(z)\right)$ and $\left(g^{\alpha \beta}(z)\right)=\left(g_{\alpha \beta}(z)\right)^{-1}$. If a function u defined in a domain of M is of class C^{2} and satisfies $\Delta u=0$, then u is said to be harmonic. For $\zeta \in M$ and a neighborhood U of ζ, we denote by $E\left(\zeta, U, d s^{2}\right)$ the set of all elementary solutions $E(\zeta, z)$ for $\Delta E(\zeta, z)=0$ on $U \times U$ except for the diagonal set (see K. Kodaira [2], p. 612).

In what follows, if M is compact, then we assume $D \neq M$. Moreover, we suppose $\zeta \in D$ and $E(\zeta, z) \in E\left(\zeta, U, d s^{2}\right)$.

First, consider the case where D is a relatively compact domain of M

