21. On Polarized Mínifolds of Sectional Genus Two

By Takao Fujita
Department of Mathematics, College of Arts and Sciences, University of Tokyo

(Communicated by Kunihiko Kodaira, m. J. a., Feb. 12, 1986)

Let L be an ample line bundle on a compact complex manifold M of dimension n. Then the sectional genus of the polarized manifold (M, L) is given by the formula

$$
2 g(M, L)-2=(K+(n-1) L) L^{n-1}
$$

where K is the canonical bundle of M. We have a satisfactory classification theory of polarized manifolds with $g(M, L) \leqq 1$ (see [1]). In this note we study the case $g(M, L)=2$. Details and proofs will be published elsewhere.

Definition. Let (M, L) be a polarized manifold and let p be a point on M. Let $\pi: M^{\prime} \rightarrow M$ be the blowing-up at p and set $L^{\prime}=\pi^{*} L-E$, where E is the exceptional divisor. If L^{\prime} is ample, the polarized manifold (M^{\prime}, L^{\prime}) is called the simple blowing-up of (M, L) at p. Note that $g\left(M^{\prime}, L^{\prime}\right)=g(M, L)$ and $\left(L^{\prime}\right)^{n}=L^{n}-1$ in this case.

Theorem A. Let (M, L) be a polarized manifold with $g(M, L)=2$, $n \geqq 3$ and $d=L^{n}>0$. Then one of the following conditions is satisfied:

1) $K=(3-n) L$ in $\operatorname{Pic}(M)$ and $d=1$.
2) M is a double covering of \boldsymbol{P}^{n} with branch locus being a smooth hypersurface of degree 6 , and L is the pull-back of $\mathcal{O}(1) . \quad d=2$.
$\left.2^{\prime}\right)(M, L)$ is a simple blowing-up of another polarized manifold (M_{0}, L_{0}) of the above type 2). $\quad d=1$ and $n=3$.
3) There is a vector bundle \mathcal{E} on a smooth surface S such that $M \simeq \boldsymbol{P}_{S}(\mathcal{E})$ and L is the tautological line bundle $\mathcal{O}(1)$.
4) There is a vector bundle \mathcal{E} on a smooth curve C of genus two such that $M \simeq \boldsymbol{P}_{c}(\mathcal{E})$ and $L=\mathcal{O}(1)$.
5) There is a surjective morphism $f: M \rightarrow C$ onto a smooth curve C such that any fiber F of f is a hyperquadric in \boldsymbol{P}^{n} and $L_{F}=\mathcal{O}_{F}(1)$.

For a proof, we use the polarized version of Mori-type theory in [1]. The above conditions 2), 2^{\prime}) and 4) are descriptive enough, so we will study the case 1), 3) and 5) in the sequel.

Theorem B. Let (M,L) be a polarized manifold as in Theorem A, 5). Then there is a vector bundle \mathcal{E} on C such that M is embedded in $P=\boldsymbol{P}_{c}(\mathcal{E})$ as a divisor, L is the restriction of the tautological line bundle H on P and $M \in\left|2 H+\pi^{*} B\right|$ for some $B \in \operatorname{Pic}(C)$, where π is the projection $P \rightarrow C$. Moreover $h^{1}\left(C, \mathcal{O}_{C}\right)=0$ or 1 . Set $b=\operatorname{deg}(B)$. Then:
b0) If $C \simeq \boldsymbol{P}^{\mathbf{1}}$, then one of the following conditions is valid.

