19. On the Construction of Pure Number Fields of Odd Degrees with Large 2-class Groups*)

By Shin Nakano
Department of Mathematics, Gakushuin University
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1986)

Introduction. In his previous paper [3], the author constructed infinitely many pure number fields of any given odd degree $n(>1)$ whose ideal class groups have 2 -rank at least $2 \Delta_{n}$, where Δ_{n} is the number of divisors of n which are smaller than n, that is $\Delta_{n}=\prod_{i=1}^{r}\left(e_{i}+1\right)-1$ if $n=\prod_{i=1}^{r} p_{i}^{e_{i}}$ is the decomposition of n into prime factors. The aim of the present paper is to give a stronger result. We shall namely show the following

Theorem. For any odd natural number n greater than 1, there exist infinitely many pure number fields of degree n whose ideal class groups have 2-rank at least $3 \Delta_{n}$.

In order to prove this, we make use of the symmetric polynomial in X, Y, Z;

$$
\begin{aligned}
& D(X, Y, Z)=\frac{X^{2}+Y^{2}+Z^{2}}{4}-\frac{X Y+Y Z+Z X}{2} \\
& \quad=\left(\frac{-X+Y+Z}{2}\right)^{2}-Y Z=\left(\frac{X-Y+Z}{2}\right)^{2}-Z X \\
& \quad=\left(\frac{X+Y-Z}{2}\right)^{2}-X Y .
\end{aligned}
$$

Putting $(X, Y, Z)=\left(x^{n}, y^{n}, z^{n}\right)$ and A_{i}, C_{i} as in the table below, we obtain the polynomial $D\left(x^{n}, y^{n}, z^{n}\right)=C_{1}^{2}-A_{1}^{n}=C_{2}^{2}-A_{2}^{n}=C_{3}^{2}-A_{3}^{n}$.

i	A_{i}	$2 C_{i}$
1	$y z$	$-x^{n}+y^{n}+z^{n}$
2	$z x$	$x^{n}-y^{n}+z^{n}$
3	$x y$	$x^{n}+y^{n}-z^{n}$

This polynomial, which will play an important part in our proof, is also applied to the research on " n-rank" of the ideal class groups of quadratic fields (Yamamoto [4], Craig [1], [2]). In that case, all the three above expressions of $D\left(x^{n}, y^{n}, z^{n}\right)$ cannot be used effectively (see [1] pp. 451). However, in the proof of our theorem, we take full advantage of them.

In case $n=3$ i.e. pure cubic case, corresponding to Craig's precise result [2] on 3-rank of the ideal class groups of quadratic fields, we can prove a 2 -rank theorem giving a better estimation than above, which will appear elsewhere.

[^0]
[^0]: *) Partially supported by the Fûjukai Foundation.

