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§1. Introduction and results. Let (M, g) be a compact Riemannian
manifold of dim M =d with or without boundary oM. We denote by f(,,(M)
the space of solenoidal vector fields on M which vanish near the boundary.
H stands for the completion of the above space with respect to L:-norm,
denoted by |-|. V* stands for the completion of )°(,,(M) in the Sobolev space
of order s € Z, whose norm is denoted by ||-||,. For 1-forms, we introduce
/01},(M) analogously. The completions of it with corresponding norms are
denoted by H and 7*, respectively. The space of symmetric tensor fields
with 2 contravariant (or covariant) indices is denoted by ST,(M) (or
ST*M).)

Our aim of this paper is to ‘solve’ the following Functional Derivative
Equation (F.D.E.):

(I) Find a functional W(t, »), for ¢t € (0, ), € /i‘(M) satisfying

1.1) yg‘th(t, 77)=jM[—i{ (@) — F](x)m(x)} W,y

dpu(a)dn ()

() () SV 7 5W(f ;7) in (@) (@ HW (R, n)]
12 - 5W(t t,7)

1.2 . 0,

d.2) v g(x) ot {Jg( ) on(x) }

1.3) Wt 0)=1

and

(1.4) WO, p)=W@»).

Here 7(x)=7,(x)dx’ e/olf,(M), and f(x, t)=f(x, t)(0/0x") e)i',,(M) for a.e. t,
W () is a given positive definite functional on /il(M) satisfying
_ 1 W o(n) }

(1.5) W0=1 and o 0 {«/ @5 o

Hereafter, we use Einstein’s convention for contracting indices and
also the terminology and symbols from Riemannian geometry and func-
tional analysis. The definition of functional derivatives

émt’ 7) and Eﬂ(t’ 7)
PG 37(2)37,Y)

is given, for example, in E. Hopf [3].

A weak golution of Problem (I) will be afforded by considering the




