16. Modular Pairs in the Lattice of Projections of a von Neumann Algebra

By Shûichirô Maeda
Department of Mathematics, Ehime University

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1986)

A pair (a, b) of elements of a lattice is called modular (resp. dualmodular), denoted by $(a, b) M$ (resp. $\left.(a, b) M^{*}\right)$, if

$$
(c \vee a) \wedge b=c \vee(a \wedge b) \text { for every } c \leqq b
$$

$$
\text { (resp. }(c \wedge a) \vee b=c \wedge(a \vee b) \text { for every } c \geqq b)
$$

(see [3], (1.1)). If A is a von Neumann algebra, then the set $P(A)$ of all projections of A forms an orthomodular lattice ([3], (37.13) and (37.15)). An algebraic characterization of modular pairs of projections is given in Section 38 of [3]. In this paper, we shall give a norm characterization of modular pairs in $P(A)$, by using the result of Bures [1].

Lemma 1. Let a, b be elements of an orthomodular lattice, and we put $a_{0}=a-a \wedge b, b_{0}=b-a \wedge b$ (see [3], (36.5)). Then,

$$
(a, b) M \Longleftrightarrow\left(a_{0}, b_{0}\right) M \Longleftrightarrow\left(a, b_{0}\right) M .
$$

Proof. Assume $\left(a_{0}, b_{0}\right) M$. Since $a_{0} \leqq(a \wedge b)^{\perp}$, we have $a_{0} C a \wedge b$ by [3], (36.3). Similarly, $b_{0} C a \wedge b$. Hence, it follows from [3], (36.11) that $\left(a_{0} \vee(a \wedge b), b_{0} \vee(a \wedge b)\right) M$, which implies $(a, b) M$.

Next, if we assume $(a, b) M$, then since $a C(a \wedge b)^{\perp}, b C(a \wedge b)^{\perp}$ and $b \wedge$ $(a \wedge b)^{\perp}=b_{0}$, we have $\left(a, b_{0}\right) M$ by [3], (36.11). Finally, if we assume $\left(a, b_{0}\right) M$, then since $a \wedge b_{0}=(a \wedge b) \wedge b_{0} \leqq(a \wedge b) \wedge(a \wedge b)^{\perp}=0$, we have $\left(a_{0}, b_{0}\right) M$ by [3], (1.5.3).

In [1], two elements a and b of a lattice are said to be modularly separated, if $a \wedge b=0$ and $\left(a^{\prime}, b^{\prime}\right) M^{*},\left(b^{\prime}, a^{\prime}\right) M^{*}$ for all $a^{\prime} \leqq a$ and $b^{\prime} \leqq b$.

Lemma 2. Let A be a von Neumann algebra and let e, $f \in P(A)$.
(i) $\quad(e, f) M \Longleftrightarrow(f, e) M \Longleftrightarrow(e, f) M^{*} \Longleftrightarrow(f, e) M^{*}$.
(ii) e and f are modularly separated if and only if $e \wedge f=0$ and $(e, f) M$.

Proof. Since A is a Baer ${ }^{*}$-ring satisfying the condition (SR) ([3], (37.15)), (i) follows from [3], (29.8) and (37.14). The "only if" part of (ii) follows from (i). Conversely, if $e \wedge f=0$ and (e, f) M then (e^{\prime}, f^{\prime}) M for all $e^{\prime} \leqq e, f^{\prime} \leqq f$ by [3], (1.5.3). Hence, e and f are modularly separated by (i).

We remark that Theorem 6 and Corollary of Theorem 7 in [1] immediately follow from our Lemma 2 (ii) and [3], (1.6).

Theorem 3. Let A be a von Neumann algebra and let e, $f \in P(A)$. (e, f) is a modular pair in $P(A)$ if and only if there exist a finite element $e_{1} \in P(A)$ with $e_{1} \leqq e-e \wedge f$ and an orthogonal sequence of central projections

