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Interpolation of Linear Operators in Lebesgue
Spaces with Mixed Norm
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Mathematical Institute, TShoku University

(Communicated by K,Ssaku YOSlDA, M. J. n., Feb. 12, 1986)

The aim of this paper is to show that a bounded linear operator in the
Lebesgue spaces L’(M;L’(M)) with mixed norm is bounded in the space
L(M/) under a condition on (s, t), where 1/u=(m/s+n/t)/(m+n). As
applications we shall have a result on Riesz-Bochner summing operator and
on the restriction problem of Fourier transform.

1. Notations. Let (M, //,/) and (N, 3/, ) be a-finite measure spaces,
and (M, ff, g) (]--0, 1, ...) be copies of (M, , ). Let d2 and (M, , p)
be the product measure space -(M,, g). For a subset p {P0,

.., p_}c{0, 1,..., d-l} put
(M(p), (p), Z(p))= [] (M, , Z).

jp

Thus
dz(p)(Xo, ., x_) do(Xo) dz_(x_,) and dfi= dz(p) dp(p’),

where p’ denotes the complement {0, 1, ..., d-1}p. (, , 9) and (N(p),
(p), v(p)) will be defined similarly.

Let ls, t<. L"(M) denotes the Lebesgue space with norm

[f"dp and L(L")=L(M(p’); L"(M(p))) the Lebesgue space with

mixed norm

"f"";> [I(’)(I,> ’f d(p))t/d(P’)] /"
The definition for the cases s= and/or t= will be modified obviously.

Let m and n be positive integers such that d=m+n. We define ul
by

1/u=(m/s+n/t)/d.
For ls, s’ will denote the conjugate exponent s/(s-1).

P denotes the family {p e {0, 1, ..., d-l} card (p)=m} if mn and
P= {0, 1, ., d--l} otherwise. Let {I, p e P} be a family of disjoint arcs
in the unit circle of length 2u/card (P).

2. Theorems.
Lemma 1. Assume lg sg t . Let w and f be simple functions in

(M, , fi). Then there exist functions W(x) and F(x) on M such that
(i) W(x) and F(x) are bounded and holomorphic in zl for every

x e M, and measurable in x for every ]z]l,
( ii ) W(x) w(x) and F(x)= f(x),
(iii) W ](t.;) w ]] for z e int (I) and p e P,
and


