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1. Let &(s, at/2x) be the error-term in the approximate functional
equation for {%(s), i.e.

Efs, at|2r) =Cs)— Z' dm)n=*—1(s) >/ dm)n,

n=at/2n nst/2za

where X(s) is the I'-factor in the functional equation for ¢(s), and the prime
indicates that d(at/27) and d(f/2z«) are halved ; naturally we use the con-
vention that d(x)=0 if « is not an integer.

The problem of finding an asymptotic expansion for &(s, at/27) has
been solved in our former note [2] when o«=1 the symmetric case. Here
we shall show a solution for the non-symmetric case where « is a rational
number with a ‘not-too-large’ denominator. To state our result we introduce
some notations: Let (k,)=1, and

A, 1) =3 d(n) exp 2riln k) — z’ (log _;f 127 — 1) —E©,1/k),

where 7 is the Euler constant, and E(0,!/k) is the value at s=0 of the
analytic continuation of

Es, 1/k)= }“j d(n) exp 2riln/kyn-:.
We put
Y(s,l/ k)= ——exp (wt /)2 [ ) 2L ) = AUt | 2xk, 1) k)
2~/,,, exp (nt /DA k)~ (kl/2nt)/* Z d(n)
X exp (—2xiln/kYh(n/El)n-%,
where /=1 (mod %) and

n(x) =J': exp ( —7,7:3(;5)(5 + 1)—3/2d$.

Theorem. Let (k,)=1, I<<k, kl<t(log t)"*. Then we have, for 0<g

<1,
XA—8)E(s, It)2xk) =Y (s, 1/ k) + YA —s5, k/)+O1/ k) (kl/t)"*(log t)°).

Remarks. As has been observed by Jutila ([1, p. 105)), &(s, at/27) =
2 (ogt) when « is very close to 1 (e.g. a=1—ct""?). Thus, if k>t then
&8, It/2nk) cannot be small in general. But our result implies that if %l
is relatively small then the approximation becomes significant. This
reminds us of the ‘major-arc, minor-arc’ situation in the theory of trigono-
metrical method. It should be noted also that the O-term in our theorem



