117. A Note on the Approximate Functional Equation for $\zeta^{2}(s)$. III

By Yoichi Motohashi

Department of Mathematics, College of Science and Technology, Nihon University, Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 12, 1986)

1. Let $\mathcal{E}_{2}(s, \alpha t / 2 \pi)$ be the error-term in the approximate functional equation for $\zeta^{2}(s)$, i.e.

$$
\mathcal{E}_{2}(s, \alpha t / 2 \pi)=\zeta^{2}(s)-\sum_{n \leqq \alpha t / 2 \pi}^{\prime} d(n) n^{-s}-\chi^{2}(s) \sum_{n \leqq t / 2 \pi \alpha}^{\prime} d(n) n^{s-1},
$$

where $\chi(s)$ is the Γ-factor in the functional equation for $\zeta(s)$, and the prime indicates that $d(\alpha t / 2 \pi)$ and $d(t / 2 \pi \alpha)$ are halved; naturally we use the convention that $d(x)=0$ if x is not an integer.

The problem of finding an asymptotic expansion for $\mathcal{E}_{2}(s, \alpha t / 2 \pi)$ has been solved in our former note [2] when $\alpha=1$ the symmetric case. Here we shall show a solution for the non-symmetric case where α is a rational number with a 'not-too-large' denominator. To state our result we introduce some notations: Let $(k, l)=1$, and

$$
\Delta(x, l / k)=\sum_{n \leqq x}^{\prime} d(n) \exp (2 \pi i l n / k)-\frac{x}{k}\left(\log \frac{x}{k^{2}}+2 \gamma-1\right)-E(0, l / k),
$$

where γ is the Euler constant, and $E(0, l / k)$ is the value at $s=0$ of the analytic continuation of

$$
E(s, l / k)=\sum_{n=1}^{\infty} d(n) \exp (2 \pi i l n / k) n^{-s}
$$

We put

$$
\begin{aligned}
Y(s, l / k)= & -\exp (\pi i / 4)(2 \pi / t)^{1 / 2}(l / k)^{1-s} \Delta(l t / 2 \pi k, l / k) \\
& +\frac{1}{2 \sqrt{\pi}} \exp (\pi i / 4)(l / k)^{1 / 2-s}(k l / 2 \pi t)^{1 / 4} \sum_{n=1}^{\infty} d(n) \\
& \times \exp (-2 \pi i \bar{l} n / k) h(n / k l) n^{-3 / 4},
\end{aligned}
$$

where $l \bar{l} \equiv 1(\bmod k)$ and

$$
h(x)=\int_{0}^{\infty} \exp (-i \pi x \xi)(\xi+1)^{-3 / 2} d \xi
$$

Theorem. Let $(k, l)=1, l<k, k l \leqq t(\log t)^{-20}$. Then we have, for $0 \leqq \sigma$ $\leqq 1$,

$$
\chi(1-s) \mathcal{E}_{2}(s, l t / 2 \pi k)=Y(s, l / k)+\bar{Y}(1-\bar{s}, k / l)+O\left((l / k)^{1 / 2-\sigma}(k l / t)^{1 / 2}(\log t)^{3}\right)
$$

Remarks. As has been observed by Jutila ([1, p. 105]), $\mathcal{E}_{2}(s, \alpha t / 2 \pi)=$ $\Omega(\log t)$ when α is very close to 1 (e.g. $\alpha=1-c t^{-1 / 2}$). Thus, if $k l \gg t$ then $\mathcal{E}_{2}(s, l t / 2 \pi k)$ cannot be small in general. But our result implies that if $k l$ is relatively small then the approximation becomes significant. This reminds us of the 'major-arc, minor-arc' situation in the theory of trigonometrical method. It should be noted also that the O-term in our theorem

