112. Groups Associated with Compact Type Subalgebras of Kac-Moody Algebras

By Kiyokazu Suto
Department of Mathematics, Kyoto University
(Communicated by Shokichi Iyanaga, m. J. A., Dec. 12, 1986)

The Kac-Moody groups associated with a given Kac-Moody algebra as constructed by Peterson-Kac [5] have a disadvantage that the exponential map can not be defined on the whole algebra. The present note gives a partial solution to the problem to remedy the situation, by constructing groups in the above title.
§ 1. Kac-Moody algebras. Let g be a Kac-Moody algebra and A the corresponding generalized Cartan matrix (GCM). Let \mathfrak{G} be the Cartan subalgebra of \mathfrak{g}, Δ the root system of ($\mathfrak{g}, \mathfrak{h}$), Π the set of simple roots, Δ_{+}the set of positive roots with respect to Π, and W the Weyl group. We denote by g_{R} the Kac-Moody algebra over the real number field \boldsymbol{R} corresponding to the GCM A, and by \mathfrak{G}_{R} the Cartan subalgebra of \mathfrak{g}_{R}. Then, $\mathfrak{g}=\boldsymbol{C} \otimes \mathfrak{g}_{R}$ and $\mathfrak{G}=C \otimes \mathfrak{G}_{R}$. There exists an involutive antilinear automorphism ω_{0} on g such that
(1.1)

$$
\omega_{0}(h)=-h \quad\left(h \in \mathfrak{h}_{R}\right), \quad \omega_{0}\left(\mathfrak{g}^{\alpha}\right)=\mathfrak{g}^{-\alpha} \quad(\alpha \in \Delta),
$$

where g^{α} is the α-root space (cf. [3, Chap. 2]). We denote by \mathfrak{f} and \mathfrak{f}_{R} the set of fixed points of ω_{0} in g and g_{R} respectively. Then, $\mathfrak{f}_{R}=\mathfrak{f} \cap g_{R}$. Since ω_{0} is an involution, f is a real form of g as a Lie algebra. We call \mathfrak{f} the unitary form of \mathfrak{g} and \mathfrak{f}_{R} a compact type subalgebra of \mathfrak{g}_{R}. If \mathfrak{g} is finitedimensional, then \mathfrak{g} is semisimple, \mathfrak{f} is a compact real form of \mathfrak{g}, and \mathfrak{f}_{R} is a maximal compact subalgebra of g_{R}.

We assume throughout that the GCM A is symmetrizable (cf. [3]). Then, there exists a symmetric bilinear form $(\cdot \mid \cdot)$ on \mathfrak{g}, a standard invariant form, which is infinitesimally invariant under ad g. The restriction of $(\cdot \mid \cdot)$ to \mathfrak{G} is W-invariant and non-degenerate, and defines a W-equivariant linear bijection ν from \mathfrak{G} onto its dual \mathfrak{h}^{*}. We denote by the same symbol $(\cdot \mid \cdot)$ the induced bilinear form on \mathfrak{h}^{*}. Then we have
(1.2) $\quad[x, y]=(x \mid y) \nu^{-1}(\alpha) \quad\left(x \in \mathfrak{g}^{\alpha}, y \in \mathfrak{g}^{-\alpha}, \alpha \in \Delta\right)$.

We define a sesquilinear form $(\cdot \mid \cdot)_{0}$ on g as

$$
\begin{equation*}
(x \mid y)_{0}=-\left(x \mid \omega_{0}(y)\right) \quad(x, y \in \mathfrak{g}) . \tag{1.3}
\end{equation*}
$$

Then, according to [4, Theorem 1], $(\cdot \mid \cdot)_{0}$ is Hermitian and its restriction to each root space g^{α} is positive definite.

Put $\mathfrak{n}_{ \pm}=\sum_{\alpha \in A_{+}} \mathfrak{g}^{ \pm \alpha}$. Then, they are both subalgebras of \mathfrak{g}, and we have a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$(direct sum).
§ 2. Irreducible highest weight modules. Let $\lambda \in \mathfrak{h}^{*}$ and L_{λ} be the left ideal of the enveloping algebra $U(\mathfrak{g})$ generated by \mathfrak{n}_{+}and $\{h-\lambda(h) \mid h \in \mathfrak{h}\}$.

