112. Groups Associated with Compact Type Subalgebras of Kac-Moody Algebras

By Kiyokazu SUTO Department of Mathematics, Kyoto University (Communicated by Shokichi Iyanaga, M. J. A., Dec. 12, 1986)

The Kac-Moody groups associated with a given Kac-Moody algebra as constructed by Peterson-Kac [5] have a disadvantage that the exponential map can not be defined on the whole algebra. The present note gives a partial solution to the problem to remedy the situation, by constructing groups in the above title.

§1. Kac-Moody algebras. Let g be a Kac-Moody algebra and A the corresponding generalized Cartan matrix (GCM). Let \mathfrak{h} be the Cartan subalgebra of g, Δ the root system of (g, \mathfrak{h}), Π the set of simple roots, Δ_+ the set of positive roots with respect to Π , and W the Weyl group. We denote by \mathfrak{g}_R the Kac-Moody algebra over the real number field R corresponding to the GCM A, and by \mathfrak{h}_R the Cartan subalgebra of \mathfrak{g}_R . Then, $\mathfrak{g}=C\otimes\mathfrak{g}_R$ and $\mathfrak{h}=C\otimes\mathfrak{h}_R$. There exists an involutive antilinear automorphism ω_0 on g such that

(1.1) $\omega_0(h) = -h \quad (h \in \mathfrak{h}_R), \qquad \omega_0(\mathfrak{g}^{\alpha}) = \mathfrak{g}^{-\alpha} \quad (\alpha \in \mathcal{A}),$

where g^{α} is the α -root space (cf. [3, Chap. 2]). We denote by \mathfrak{k} and \mathfrak{k}_R the set of fixed points of ω_0 in g and \mathfrak{g}_R respectively. Then, $\mathfrak{k}_R = \mathfrak{k} \cap \mathfrak{g}_R$. Since ω_0 is an involution, \mathfrak{k} is a real form of g as a Lie algebra. We call \mathfrak{k} the *unitary form* of g and \mathfrak{k}_R a *compact type subalgebra* of \mathfrak{g}_R . If g is finite-dimensional, then g is semisimple, \mathfrak{k} is a compact real form of g, and \mathfrak{k}_R is a maximal compact subalgebra of \mathfrak{g}_R .

We assume throughout that the GCM A is symmetrizable (cf. [3]). Then, there exists a symmetric bilinear form $(\cdot | \cdot)$ on g, a standard invariant form, which is infinitesimally invariant under ad g. The restriction of $(\cdot | \cdot)$ to \mathfrak{h} is *W*-invariant and non-degenerate, and defines a *W*-equivariant linear bijection ν from \mathfrak{h} onto its dual \mathfrak{h}^* . We denote by the same symbol $(\cdot | \cdot)$ the induced bilinear form on \mathfrak{h}^* . Then we have

(1.2) $[x, y] = (x | y)\nu^{-1}(\alpha) \qquad (x \in \mathfrak{g}^{\alpha}, y \in \mathfrak{g}^{-\alpha}, \alpha \in \varDelta).$

We define a sesquilinear form $(\cdot | \cdot)_{\mathfrak{o}}$ on \mathfrak{g} as

(1.3) $(x | y)_0 = -(x | \omega_0(y)) \quad (x, y \in g).$

Then, according to [4, Theorem 1], $(\cdot | \cdot)_0$ is Hermitian and its restriction to each root space g^{α} is positive definite.

Put $n_{\pm} = \sum_{\alpha \in \mathcal{I}_{+}} g^{\pm \alpha}$. Then, they are both subalgebras of g, and we have a triangular decomposition $g = n_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ (direct sum).

§ 2. Irreducible highest weight modules. Let $\lambda \in \mathfrak{h}^*$ and L_{λ} be the left ideal of the enveloping algebra $U(\mathfrak{g})$ generated by \mathfrak{n}_+ and $\{h - \lambda(h) | h \in \mathfrak{h}\}$.