90. A Remark on the λ-invariant of Real Quadratic Fields

By Takashi Fukuda,*) Keiichi Komatsu,**) and Hideo Wada***)
(Communicated by Shokichi Iyanaga, m. J. A., Oct. 13, 1986)

In previous papers [1] and [2] by two of us, we considered Greenberg's conjecture (cf. [3]) on real quadratic case. In [2], it was essential to assume $n_{1}<n_{2}$ for two natural numbers n_{1} and n_{2} whose definitions will be recalled in the following. The purpose of this paper is to give some examples concerning the case $n_{1}=n_{2}=2$.

Let k be a real quadratic field with class number h_{k} and p an odd prime number which splits in k / \boldsymbol{Q}. Let \mathfrak{p} be a prime factor of p in k, and ε be a fundamental unit of k. Choose $\alpha \in k$ such that $\mathfrak{p}^{k_{k}}=(\alpha)$. We define n_{1} $\left(\right.$ resp. $\left.n_{2}\right)$ to be the maximal integer such that $\alpha^{p-1} \equiv 1\left(\bmod p^{n_{1}} Z_{p}\right)\left(\right.$ resp. ε^{p-1} $\left.\equiv 1\left(\bmod p^{n_{2}} Z_{p}\right)\right)$. Note that n_{1} is uniquely determined under the condition $n_{1} \leqq n_{2}$. For the cyclotomic Z_{p}-extension

$$
k=k_{0} \subset k_{1} \subset k_{2} \subset \cdots \subset k_{n} \subset \cdots \subset k_{\infty}
$$

let A_{n} be the p-primary part of the ideal class group of k_{n}, B_{n} the subgroup of A_{n} consisting of ideal classes which are invariant under the action of Gal $\left(k_{n} / k\right)$, and D_{n} the subgroup of A_{n} consisting of ideal classes which contain a product of ideal lying over p. Let E_{n} be the unit group of k_{n}. For $m \geqq n \geqq 0, N_{m, n}$ denotes the norm maps from k_{m} to k_{n}, we shall give a proof for the sake of completeness.

Lemma. Let k be a real quadratic field and p an odd prime number which splits in k / \boldsymbol{Q}. Assume that
(1) $n_{1}=n_{2}=2$,
(2) $\left|A_{0}\right|=1$, and
(3) $N_{1,0}\left(E_{1}\right)=E_{0}$.

Then we have $\left|A_{n}\right|=\left|A_{1}\right|$ for all $n \geqq 1$ and in particular $\mu_{p}(k)=\lambda_{p}(k)=0$, where μ, λ denote the Iwasawa invariants.

Proof. From Proposition 1 of [1], $\left|B_{n}\right|=p$ for all $n \geqq 1$. By the assumptions (2) and (3), we have

$$
\left|D_{1}\right|=\frac{p}{\left(E_{0} ; N_{1,0}\left(E_{1}\right)\right)}=p .
$$

It follows that $B_{n}=D_{n}$ and $N_{n+1, n}: B_{n+1} \rightarrow B_{n}$ are isomorphisms for all $n \geqq 1$. Now, $N_{n+1, n}: A_{n+1} \rightarrow A_{n}$ is surjective and its restriction to B_{n+1} is injective. Hence, $N_{n+1, n}: A_{n+1} \rightarrow A_{n}$ are isomorphisms for all $n \geqq 1$.

When $p=3, k_{1}$ is a real cyclic extension of degree 6 over \boldsymbol{Q}. In this case, we can determine a system of fundamental units of k_{1} for a given k

[^0]
[^0]: *) Department of Mathematics, Faculty of Science, Yamagata University.
 **) Department of Mathematics, Tokyo University of Agriculture and Technology.
 ***) Department of Mathematics, Sophia University.

