90. A Remark on the λ -invariant of Real Quadratic Fields

By Takashi FUKUDA,*) Keiichi KOMATSU,**) and Hideo WADA***)

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 13, 1986)

In previous papers [1] and [2] by two of us, we considered Greenberg's conjecture (cf. [3]) on real quadratic case. In [2], it was essential to assume $n_1 < n_2$ for two natural numbers n_1 and n_2 whose definitions will be recalled in the following. The purpose of this paper is to give some examples concerning the case $n_1 = n_2 = 2$.

Let k be a real quadratic field with class number h_k and p an odd prime number which splits in k/Q. Let p be a prime factor of p in k, and ε be a fundamental unit of k. Choose $\alpha \in k$ such that $p^{n_k} = (\alpha)$. We define n_1 (resp. n_2) to be the maximal integer such that $\alpha^{p-1} \equiv 1 \pmod{p^{n_1}Z_p}$ (resp. ε^{p-1} $\equiv 1 \pmod{p^{n_2}Z_p}$). Note that n_1 is uniquely determined under the condition $n_1 \leq n_2$. For the cyclotomic Z_p -extension

$$k = k_0 \subset k_1 \subset k_2 \subset \cdots \subset k_n \subset \cdots \subset k_{\infty},$$

let A_n be the *p*-primary part of the ideal class group of k_n , B_n the subgroup of A_n consisting of ideal classes which are invariant under the action of Gal (k_n/k) , and D_n the subgroup of A_n consisting of ideal classes which contain a product of ideal lying over *p*. Let E_n be the unit group of k_n . For $m \ge n \ge 0$, $N_{m,n}$ denotes the norm maps from k_m to k_n , we shall give a proof for the sake of completeness.

Lemma. Let k be a real quadratic field and p an odd prime number which splits in k/Q. Assume that

- (1) $n_1 = n_2 = 2$,
- (2) $|A_0|=1$, and
- (3) $N_{1,0}(E_1) = E_0$.

Then we have $|A_n| = |A_1|$ for all $n \ge 1$ and in particular $\mu_p(k) = \lambda_p(k) = 0$, where μ, λ denote the Iwasawa invariants.

Proof. From Proposition 1 of [1], $|B_n| = p$ for all $n \ge 1$. By the assumptions (2) and (3), we have

$$|D_1| = \frac{p}{(E_0; N_{1,0}(E_1))} = p.$$

It follows that $B_n = D_n$ and $N_{n+1,n} : B_{n+1} \to B_n$ are isomorphisms for all $n \ge 1$. Now, $N_{n+1,n} : A_{n+1} \to A_n$ is surjective and its restriction to B_{n+1} is injective. Hence, $N_{n+1,n} : A_{n+1} \to A_n$ are isomorphisms for all $n \ge 1$.

When p=3, k_1 is a real cyclic extension of degree 6 over Q. In this case, we can determine a system of fundamental units of k_1 for a given k

**) Department of Mathematics, Tokyo University of Agriculture and Technology.

^{*)} Department of Mathematics, Faculty of Science, Yamagata University.

^{***)} Department of Mathematics, Sophia University.