# 81. Periodicity and Almost Periodicity of Solutions to Free Boundary Problems in Hele-Shaw Flows 

By Masahiro Kubo<br>Department of Pure and Applied Sciences, College of Arts and Sciences, University of Tokyo<br>(Communicated by Kôsaku Yosida, M. J. A., Oct. 13, 1986)

This paper is concerned with the asymptotic behavior of solutions to the following problem : given $f, g_{0}, g_{1}$ and $u_{0}$, find $u$ such that

$$
\begin{cases}\frac{\partial u}{\partial t}-\Delta v=f, & v \in \beta(u) \quad \text { in }(0, \infty) \times \Omega  \tag{1}\\ v=g_{0} & \text { on }(0, \infty) \times \Gamma_{0} \\ \frac{\partial v}{\partial n}+p \cdot v=g_{1} & \text { on }(0, \infty) \times\left(\Gamma \backslash \Gamma_{0}\right) \\ u(0)=u_{0} & \text { in } \Omega,\end{cases}
$$

where $\Omega$ is a bounded domain in $R^{N}$ with smooth boundary $\Gamma, \Gamma_{0}$ is a compact subset of $\Gamma$ with positive surface measure, $p$ is a positive bounded measurable function on $\Gamma$ and $\beta$ is a maximal monotone graph in $\boldsymbol{R} \times \boldsymbol{R}$. In [6] and [7], the global behavior of solutions to (1) is studied in case when $\beta$ is Lipschitz continuous. This case corresponds to a Stefan problem in a weak sense. But, for instance, in the weak formulations of free boundary problems arising from Hele-Shaw flows and electro-chemical machining processes, $\beta$ is in general multi-valued (cf. [3, 8, 12, 13, 14, 15]). In [10] and [11], the stability of solutions to general evolution equations generated by time-dependent subdifferentials is studied. But their results do not seem to be directly applicable to our problem. In this paper, we extend a part of the results in [7] to a class of $\beta$ including the case of Hele-Shaw flows and electro-chemical machining processes.

Let us use the notations: $H=L^{2}(\Omega)$ with inner product $(\cdot, \cdot)_{H}$. And put $V=\left\{z \in H^{1}(\Omega) ; z=0\right.$ a.e. on $\left.\Gamma_{0}\right\}$. Then $V$ becomes a Hilbert space with inner product

$$
(z, y)_{V}=\int_{\Omega} \nabla z \cdot \nabla y \mathrm{dx}+\int_{\Gamma} p(x) z(x) y(x) \mathrm{d} \Gamma \quad \text { for } z, y \in V
$$

We denote by $V^{*}$ the dual space of $V$ and regard $V^{*}$ as a Hilbert space with inner product $(z, y)_{*}=\left\langle z, F^{-1} y\right\rangle_{V^{*}, V}$ and norm $|z|_{*}=\langle z, z\rangle_{*}^{1 / 2}$ where $\langle\cdot, \cdot\rangle_{V^{*}, V}$ is the duality between $V^{*}$ and $V$ and $F$ is the duality mapping from $V$ onto $V^{*}$.

Definition 1. For given constants $a>0$ and $b \geqq 0$, let $B(a, b)$ be the set of all maximal monotone graph $\beta$ in $\boldsymbol{R} \times \boldsymbol{R}$ such that $\beta=\partial \hat{\beta}$ for some $\hat{\beta}: \boldsymbol{R} \rightarrow \boldsymbol{R} \cup\{\infty\}$ proper l.s.c. (lower-semicontinuous) convex function with $\hat{\beta}(0)=0$ and $\hat{\beta}(r) \geqq a|r|^{2}-b$ for all $r \in \boldsymbol{R}$.

