77. On Conjugacy Classes of the Proll braid Group of Degree 2 ${ }^{\text {th }}$

By Masanobu Kaneko
Department of Mathematics, Faculty of Science, University of Tokyo
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1986)

0. Introduction. In [2], Y. Ihara studied the "pro-l braid group" of degree 2 which is a certain big subgroup $\Phi \subset$ Out \mathscr{F} of the outer automorphism group of the free pro-l group \mathfrak{F} of rank 2. There is a canonical representation $\varphi_{\boldsymbol{Q}}: G_{\boldsymbol{Q}} \rightarrow \Phi$ of the absolute Galois group $G_{\boldsymbol{Q}}=\operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q})$ which is unramified outside l, and for each prime $p \neq l$, the Frobenius of p determines a conjugacy class C_{p} of Φ which is contained in the subset $\Phi_{p} \subset \Phi$ formed of all elements of "norm" p (loc. cit. Ch. I). In this note, we shall prove that Φ_{p} contains infinitely many Φ-conjugacy classes, at least if p generates $\boldsymbol{Z}_{l}^{\times}$topologically. It is an open question whether one can distinguish the Frobenius conjugacy class from other norm-p-conjugacy classes.
1. The result. Let l be a rational prime. We denote by $\boldsymbol{Z}_{l}, \boldsymbol{Z}_{l}^{\times}$and \boldsymbol{Q}_{l}, respectively, the ring of l-adic integers, the group of l-adic units and the field of l-adic numbers. As in [2], let $\mathfrak{F}=\mathscr{F}^{(2)}$ be the free pro-l group of rank 2 generated by $x, y, z, x y z=1, \Phi=\operatorname{Brd}^{(2)}(\mathfrak{F} ; x, y, z)$ be the pro-l braid group of degree $2, \operatorname{Nr}(\sigma) \in \boldsymbol{Z}_{l}^{\times}$be the norm of $\sigma \in \Phi$, and for $\alpha \in \boldsymbol{Z}_{l}^{\times}$, Φ_{α} be the "norm- α-part", i.e., $\Phi_{\alpha}=\{\sigma \in \Phi \mid \operatorname{Nr}(\sigma)=\alpha\}$.

Theorem. If $\alpha \in \boldsymbol{Z}_{l}^{\times}$generates $\boldsymbol{Z}_{l}^{\times}$, then the set Φ_{α} contains infinitely many Φ-conjugacy classes.

Remarks. 1) In [2], it is proved under the same assumption, that Φ_{α} contains at least two Φ-conjugacy classes. (Corollary of Proposition 8, Ch. I.)
2) In [1], M. Asada and the author studied the "pro-l mapping class group" and obtained a result similar to 1).
2. Proof. Our method of proof is to consider the projection of Φ to the group $\Psi=\operatorname{Brd}^{(2)}\left(\mathfrak{F} / \mathfrak{F}^{\prime \prime} ; x, y, z\right)$, where $\mathfrak{F}^{\prime \prime}=\left[\mathfrak{F}^{\prime}, \mathfrak{F}^{\prime}\right], \mathscr{F}^{\prime}=[\mathfrak{F}, \mathfrak{F}]$ and we use the same symbols x, y, z for their classes $\bmod \mathfrak{F}^{\prime \prime}$. By Theorem 3 in [2] Ch. II, the group Ψ is explicitly realized as follows. Define the group Θ by

$$
\Theta=\left\{(\alpha, F) \mid \alpha \in \boldsymbol{Z}_{l}^{\times}, F \in \mathcal{A}^{\times}, F+u v w \mathcal{A}=\theta_{\alpha}\right\}
$$

with the composition law $(\alpha, F)(\beta, G)=\left(\alpha \beta, F \cdot G^{j \alpha}\right)$, where

$$
\mathcal{A}=Z_{l}[[u, v, w]] /((1+u)(1+v)(1+w)-1) \simeq Z_{l}[[u, v]],
$$

[^0]
[^0]: t) This is a part of the master's thesis of the author at the University of Tokyo (1985). He wishes to express his sincere gratitude to Professor Y. Ihara for his advice and encouragement.

