73. On Matukuma's Equation and Related Topics

By Wei-Ming NI^{*} and Shoji YOTSUTANI^{**}

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1986)

§1. Introduction. In 1930, Matukuma, an astrophysicist, proposed the following mathematical model to describe the dynamics of a globular cluster of stars,

(M) $\Delta u + (1+|x|^2)^{-1}u^p = 0$, $x \in \mathbb{R}^3$, where p > 1, u represents the gravitational potential (therefore u > 0), $\rho = -(4\pi)^{-1}\Delta u = \{4\pi(1+|x|^2)\}^{-1}u^p$ represents the density and $\iiint \rho dx$ represents the total mass (for details, see [1]). Since the globular cluster has the radial symmetry, positive radial entire solutions of (M) (i.e. solutions of (M) with u(x) = u(|x|) > 0 for all $x \in \mathbb{R}^3$) are of particular interest, and the equation (M) reduces to an ordinary differential equation

 (\mathbf{M}_{α}) $u_{rr}+(2/r)u_{r}+(1+r^{2})^{-1}u^{p}=0$ $(r>0), u(0)=\alpha, u_{r}(0)=0,$ where $\alpha>0$. For each $\alpha>0$, we denote the global unique solution of (\mathbf{M}_{α}) by $u=u(r;\alpha)$. Studying the structure of solutions of (\mathbf{M}_{α}) , Matukuma conjectured:

(i) if p < 3, then $u(r; \alpha)$ has a finite zero for every $\alpha > 0$,

(ii) if p=3, then $u(r; \alpha)$ is a positive entire solution with finite total mass for every $\alpha > 0$,

(iii) if p>3, then $u(r; \alpha)$ is a positive entire solution with infinite total mass for every $\alpha>0$.

In 1938, Matukuma found an interesting exact solution ([2]) (S) $u(r; \sqrt{3}) = \{3/(1+r^2)\}^{1/2}$ (p=3), which confirms part of his conjecture.

It turns out that the equation (M_a) is more delicate than Matukuma had expected. In answer to his conjecture, we prove that

(i) if $1 , then <math>u(r; \alpha)$ has a finite zero for every sufficiently large $\alpha > 0$,

(ii) if $1 , then <math>u(r; \alpha)$ is a positive entire solution with infinite total mass for every sufficiently small $\alpha > 0$,

(iii) if $p \ge 5$, then $u(r; \alpha)$ is a positive entire solution with infinite total mass for every $\alpha > 0$.

The conclusions above follow from our more general results stated in Section 2 below. (Set $K(r)=1/(1+r^2)$, n=3, and $\sigma=0$ in Theorem 4, l=-2 and C=1 in Theorem 3, and $\sigma=0$ in Theorem 5.) It is rather interesting

^{*&#}x27; School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.

^{**&#}x27; Department of Applied Science, Faculty of Engineering, Miyazaki University, Miyazaki 880.