72. Local Isometric Embedding Problem of Riemannian 3-manifold into R⁶

By Gen NAKAMURA*) and Yoshiaki MAEDA**)

(Communicated by Kôsaku YOSIDA, M. J. A., Sept. 12, 1986)

§1. Introduction. Although the problem of the existence of a local C^{∞} isometric embedding for a Riemannian *n*-manifold (M, g) into Euclidean space $\mathbb{R}^{n(n+1)/2}$ is an old and famous problem, there are only a few results if $n \geq 3$. Recently, Bryant-Griffiths-Yang [1] made a big contribution to the case n=3. In this paper, we generalize their results as follows:

Theorem 1. Let (M, g) be a C^{∞} Riemannian 3-manifold and $p_0 \in M$ be a point such that the curvature tensor $\mathbf{R}(p_0)$ does not vanish. Then there exists a local C^{∞} isometric embedding of a neighborhood U_0 of p_0 into \mathbf{R}^6 .

The result of [1] treats under the additional assumption: (*) $R(p_0)$ does not have signature (0, 1), where the signature of R(p) is defined by considering R(p) as a symmetric linear operator acting on the space of 2-forms.

§2. Linearized PDE for the isometric embedding equation. We shall consider the linearized PDE corresponding to the isometric embedding equation. Take $p_0 \in M$ as the origin and let $U(u^1, u^2, u^3)$ be a coordinate neighborhood around p_0 . Let $(x^4(u))$ be a local C^{∞} embedding of U into \mathbf{R}^6 and consider the following PDE for the unknown functions $(y^4(u))$: (1) $\nabla_i y_j + \nabla_j y_i = 2 \sum_{k=4}^6 y_k H_{ijk}(u) + k_{ij}(u)$ i, j=1, 2, 3, where $(k_{ij}(u))$ is a symmetric 3×3 matrix depending smoothly on u. Here,

choosing a unit normal frame field
$$\{N_{\lambda}(u)\}_{\lambda=4,5,6}$$
 on U, we set

$$y^{A}(u) = \sum_{i=1}^{6} y_{i} \frac{\partial x^{A}}{\partial u^{i}} + \sum_{\lambda=4}^{6} y_{\lambda} \cdot N^{A}_{\lambda},$$

and denote by V and $H_{ij\lambda}(u)$ the covariant derivatives and the second fundamental form in terms of the isometric embedding $(x^A)_{A=1,...,6}$ and the unit normal frame $\{N_{\lambda}\}$, respectively.

Definition 2. An isometric embedding is called *non-degenerate* if the corresponding second fundamental form $(H_{ij2}(u))$ is linearly independent in the space of all 3×3 symmetric matrices at each point of U.

For a positive integer N, let P be an $N \times N$ system of classical pseudodifferential operator on M with the principal symbol $p(x, \xi)$.

Definition 3. *P* is called a system of (real) principal type at $x_0 \in M$ if, for any $(x_0, \xi_0) \in T^*M - \{0\}$, there exists a conic neighborhood Γ of (x_0, ξ_0) , an $N \times N$ homogeneous classical symbol $\tilde{p}(x, \xi)$, and a (real valued) homo-

^{*)} Department of Mathematics, Faculty of Science, Josai University.

^{**} Department of Mathematics, Faculty of Science and Technology, Keio University.