69. Fluctuation of Spectra in Random Media

By Shin Ozawa
Department of Mathematics, Osaka University
(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1986)

§ 1. Introduction. The Lenz shift phenomena were studied by various authors by various methods. See Kac [5] Huruslov-Marchenko [4], RauchTaylor [13], Papanicolaou-Varadhan [14], Ozawa [8], [9], [10], [12], ChavelFeldman [1]. In [3], Figari-Orlandi-Teta gave fluctuation result for the Lenz shift phenomena by developing the method of [8]. In [8], perturbative calculus using the Green function was offered. It turned out to be strong enough to consider fluctuation of spectra.

In the present note we give Theorem 1 on the Lenz shift.
We consider a bounded domain Ω in R^{3} with smooth boundary γ. We put $B(\varepsilon ; w)=\left\{x \in R^{3} ;|x-w|<\varepsilon\right\}$. Fix $\beta \geq 1$. Let

$$
0<\mu_{1}(\varepsilon ; w(m)) \leq \mu_{2}(\varepsilon ; w(m)) \leq \cdots
$$

be the eigenvalues of $-\Delta(=-\operatorname{div} \operatorname{grad})$ in the set $\Omega_{\varepsilon, w(m)}=\Omega \backslash \bigcup_{i=1}^{\tilde{m}} B\left(\varepsilon ; w_{i}^{(m)}\right)$ under the Dirichlet condition on its boundary. Here \tilde{m} denotes the largest integer which does not exceed m^{β} and $w(m)$ denotes the set of \widetilde{m}-points $\left\{w_{i}^{(n)}\right\}_{i=1}^{\tilde{m}} \in \Omega^{\tilde{m}}$. Let $V(x)>0$ be C^{0}-class function on Ω satisfying

$$
\int_{\Omega} V(x) d x=1
$$

We consider Ω as the probability space with a probability density $V(x)$. Let $\Omega^{\tilde{m}}=\prod_{i=1}^{\tilde{m}} \Omega$ be the probability space with the product measure. Fix $\alpha>0$. Then, $\mu_{j}\left(\alpha / m ; w(m)\right.$) is a random variable on $\Omega^{\tilde{m}}$. Our aim is to know a precise asymptotic behaviour of $\mu_{j}(\alpha / m ; w(m))$ as $m \rightarrow \infty$.

Main result is the following :
Theorem 1. Fix j. Assume $\beta \in[1,12 / 11$), $V(x)=1 /|\Omega|$ (const.). Assume that the j-th eigenvalue μ_{j} of the Laplacian in Ω under the Dirichlet condition on γ is simple. Then, the random variable

$$
\begin{equation*}
m^{1-(\beta / 2)}\left(\left(\mu_{j}(\alpha / m ; w(m))-\left(\mu_{j}+4 \pi \alpha m^{\beta-1}|\Omega|^{-1}\right)\right)\right) \tag{1}
\end{equation*}
$$

tends in distribution to Gaussian random variable Π_{j} of mean $E\left(\Pi_{j}\right)=0$ and variance

$$
E\left(\Pi_{j}^{2}\right)=4 \pi \alpha\left(\int_{\Omega} \varphi_{j}(x)^{4}|\Omega|^{-1} d x-\left(\int_{\Omega} \varphi_{j}(x)^{2}|\Omega|^{-1} d x\right)^{2}\right)
$$

as m tends to ∞. Here φ_{j} is the normalized eigenfunction associated with μ_{j}.

Remark. Figari-Orlandi-Teta's result (see [3]) is the case $\beta=1$. As a corollary of Theorem 1, we have

$$
\lim _{m \rightarrow \infty} \boldsymbol{P}\left(w(m) \in \Omega^{\tilde{n}} ;(1) \leq c\right)=\frac{1}{\sqrt{2 \pi v}} \int_{-\infty}^{c} e^{-t / 2 v} d t
$$

where $v=E\left(\Pi_{j}^{2}\right)$.

